Relational Algebra Tutorial

SWEN304/435

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Unary Operation: Select, Project, Rename
- Binary Operation: Join, Cartesian Product, Outer Join, Union, Interaction, Difference
- Relational algebra exercises

- Project: $\pi_{AL}(N)$
 - Example: $\pi_{\text{LName, FName}}$ (Student)
- Select: $\sigma_c(N)$
 - Example: $\sigma_{FName = 'Susan'}$ (Student)
- Rename: $\rho_{A1 \rightarrow B1,...,Ak \rightarrow Bk}(N)$
 - Example: $\rho_{\text{FName} \rightarrow \text{FirstName}, \text{LName} \rightarrow \text{LastName}}(\text{Student})$

- Union: $N_1 \cup N_2$
 - Example: $\pi_{StudId}(Student) \cup \pi_{StudId}(Grades)$
- Interaction: $N_1 \cap N_2$
 - Example: $\pi_{StudId}(Student) \cap \pi_{StudId}(Grades)$
- Difference: $N_1 N_2$
 - Example: $\pi_{\text{StudId}}(\text{Student}) \pi_{\text{StudId}}(\text{Grades})$

Binary Operation: Join Operations

- Join operation joins two relations by merging those tuples from two relations that satisfy a given condition
 - The condition is defined on attributes belonging to relations to be joined
- Equijoin, natural join operations

Equijoin Operation

- Notation: $N = N_1 \Join_{JC} N_2$ where $JC = jc_1 \land \ldots \land jc_n$ $jc_i \equiv A = B, A \in R_1, B \in R_2$,
- For example,

Student M_{StudId = StudId} Grades

In SQL:

SELECT * FROM Student s, Grades g WHERE s.StudId = g.StudId;

Victoria

Equijoin: $N_1 \Join_{N1.B=N2.B} N_2$

A	В	В	С
1	2	2	7
4	4	4	9

Natural Join : $N = N_1 * N_2$

 N_1

Α

1

3

4

	$N_1 \times$	N_2	
A	B	В	C
1	2	2	7
1	2	4	9
1	2	ω	0
3	3	2	7
3	3	4	9
3	3	ω	0
4	4	2	7
4	4	4	9
4	4	ω	0
	1 1 3 3 4 4	AB1212123333334444	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Right Outer Join

B =C

$$N_1 \bowtie_{\mathsf{B}=\mathsf{C}} N_2$$

А	В	С	D
1	2	2	7
1	2	2	9
ω	ω	ω	7

Full Outer Join

А	В	С	D
1	2	2	7
1	2	2	9
5	6	ω	ω
ω	ω	ω	7

Summary or Relational Operations

- SELECT $\sigma_c(N)$: choose rows
- **PROJECT** $\pi_{A1,...,Ak}$ (*N*): choose columns
- RENAME $\rho_{A1 \rightarrow B1,...,Ak \rightarrow Bk}(N)$: rename attributes
- JOIN: combine tables
 - Natural Join $N_1 * N_2$ or
 - Equi-Join $N_1 \bowtie_{A1=B1,\dots,Ak=Bk} N_2$
- CARTESIAN PRODUCT (x): combine tables
- Set operations
 - UNION (\cup),
 - INTERSECTION (\cap),
 - DIFFERENCE (or MINUS, -)
- Additional Relational Operations
 - OUTER JOINS

Victoria

A Sample Relational Database

Student

Victoria UNIVERSITY OF WELLINGTON TE Whare Winanga o te Üpoko o te Ika a Mäui

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

CName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

Grades

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	A
010101	C201	ω

- Suppose we are given the university database instance as in slide 9. Write queries in relational algebra for the following queries
 - 1. Find all students with their ID who got at least one A+'
 - 2. Find students with their ID, FName, who have enrolled in C302
 - 3. Find students with their IDs who have enrolled in 'C201' but not 'C302'
 - 4. Find students who have enrolled in both 'M214' and 'C302'
 - Find students who have neither enrolled in 'M214' nor in 'C302'
 - 6. Find students who major in 'Math' and got 'A+' in at least one course offered by computer science department
 - 7. Find students who always take courses from Comp department.

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

Grades

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

 Find all students with their student ID who have got at least one `A+'

 $\pi_{\text{StudId}} (\sigma_{\text{Grade='A+'}} \text{ (Grades))}$

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

Grades StudId CourId Grade C302 007007 A+ C302 555555 ω C301 007007 А 007007 M214 A+ C201 131313 B-C201 555555 С 131313 C302 ω 007007 C201 Α 010101 C201 ω

Find students with their ID, FName, who have enrolled in 2. `C302'

 $\pi_{\text{StudId, FName}} (\sigma_{\text{CourId} = `C302'} (\text{Student * Grades})) \text{ or}$ $\pi_{\text{StudId, FName}}$ (Student * $\sigma_{\text{CourId} = `C302'}$ (Grades))

Victoria Victoria Ministrative Ministrati

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

Grades

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	C
131313	C302	ω
007007	C201	А
010101	C201	ω

3. Find students with their IDs who have enrolled **in** 'C201' **but not in** C302'

 $\pi_{\text{StudId}} \left(\sigma_{\text{CourId} = `C201'} (\text{Grades}) \right) - \pi_{\text{StudId}} \left(\sigma_{\text{CourId} = `C302'} (\text{Grades}) \right)$ $\underline{\text{not: correct: } \underline{\pi}_{\underline{\text{StudId}}} (\underline{\sigma}_{\underline{\text{CourId} = `C201'}} (\underline{\text{Grades}}) - \underline{\sigma}_{\underline{\text{CourId} = `C302'}} (\underline{\text{Grades}}))}$

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

Grades

4. Find students who have enrolled in **both** 'M214' and 'C302' $\pi_{\text{StudId}} \left(\sigma_{\text{CourId}} = \text{'M214'} (\text{Grades}) \right) \cap \pi_{\text{StudId}} \left(\sigma_{\text{CourId}} = \text{'C302'} (\text{Grades}) \right)$ **not correct:** $\pi_{\text{StudId}} \left(\sigma_{\text{CourId}} = \text{'M214'} (\text{Grades}) \cap \sigma_{\text{CourId}} = \text{'C302'} (\text{Grades}) \right)$

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

5. Find students who have **neither** enrolled in 'M214' **nor** in 'C302'

Grades

(π_{StudId} (Student) – π_{StudId} ($\sigma_{\text{CourId} = `M214'}$ (Grades))) - π_{StudId} ($\sigma_{\text{CourId} = `C302'}$ (Grades))

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

Grades

Find students who major in `Math' and got `A+' in at least one course offered by computer science department

 π_{StudId} (σ_{Grade=`A+' ∧ Major = `Math' ∧ Dept = `Comp'} (Course * (Student * Grades))) or

$$\pi_{\text{StudId}} \left(\sigma_{\text{Dept} = `Comp'} (\text{Course}) * \left(\sigma_{\text{Major} = `Math'} (\text{Student}) * \sigma_{\text{Grade}=`A+'} (\text{Grades}) \right) \right)$$

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Course

PName	CourId	Points	Dept
DB Sys	C302	15	Comp
SofEng	C301	15	Comp
DisMat	M214	22	Math
Pr&Sys	C201	22	Comp

StudId	CourId	Grade
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

Grades

7. Find students who **always** take courses from Comp department.

 $\pi_{\text{StudId}} (\sigma_{\text{Dept} = `Comp'} (\text{Course } * \text{Grades})) - \pi_{\text{StudId}} (\sigma_{\text{Dept} \neq `Comp'} (\text{Course } * \text{Grades}))$