Query Optimisation Tutorial

SWEN304/SWEN435

Lecturer: Dr Hui Ma

Engineering and Computer Science

Query Computation Costs for Unary Operators

- selection $\sigma_{\rm C}$ is linear in the size number n of tuples of the involved relation
 - scan the relation one tuple after the other
 - check for each tuple, whether the condition C is satisfied or not
 - keep exactly those tuples satisfying C
- projection π_{AL} is in $O(n \cdot \log n)$ with the number n of tuples
 - order the relation according to the attributes in AL (this is the most costly part leading to the complexity in O(n · log n))
 - scan the relation one tuple after the other
 - project each tuple to the attributes in AL and check, whether result is the same as for previous tuple (duplicate elimination)
 - Note: SQL does not eliminate tuples, i.e. costs of projection are in O(n), but DISTINCT needs the ordering
- renaming δ_f can be neglected

Query Computation Costs for Binary Operators

- join ⋈ is in O(n · log n) with n = n₁ + n₂, where n_i are the respective numbers of tuples in the two relations involved
 - the easiest idea is to use a nested loop:
 - scan the first relation one tuple after the other
 - for each tuple scan the second relation to find matching tuples, i.e., those coinciding with the given tuple on the common attributes
 - in case tuples match, take the joined tuple into the result relation
 - more efficient is the merge join:
 - sort both relations (this is the most costly part)
 - scan both relations simultaneously to find matching tuples
 - in case tuples match, take the joined tuple into the result relation
- union \cup is in $O(n \cdot \log n)$ with $n = n_1 + n_2$, where n_i are the respective numbers of tuples in the two relations involved (analogously for difference –)
 - sort both relations as for the merge join
 - scan simultaneously to detect duplicates

Estimating the Size of Relations

- let $R = \{A_1, \ldots, A_k\}$ be a relation schema
- determine the size of a relation r over R:
 - let n denote the average number of tuples in the relation r
 - let ℓ_j denote the the average space (e.g., in bits) for attribute A_j in a tuple in r

• then
$$n \cdot \sum_{j=1}^k \ell_j$$
 is the space needed for the relation r

- determine the size of intermediate relations in a query using the query tree:
 - assign the size of the relation to each leaf node ${\cal R}$
 - for a renaming node the assigned size is exactly the size s assigned to the successor

- for a selection node $\sigma_{\rm C}$ the assigned size is $a_{\rm C} \cdot s$, where s is the size assigned to the successor and $100 \cdot a_{\rm C}$ is the average percentage of tuples satisfying C
- for a projection node π_{R_i} the assigned size is $(1-C_i) \cdot s \cdot \frac{r_i}{r}$, where $r_i(r)$ is

the average size of a tuple in a relation over R_i (R), s is the size assigned to the successor and C_i is the probability that two tuples coincide on R_i

 $(1 - C_i) \cdot s \cdot \frac{r_i}{r} = (1 - C_i) \cdot n \cdot r_i$ where n is average number of tuples in *R*-relation *R*

• for a join node the assigned size is $\frac{s_1}{r_1} \cdot p \cdot \frac{s_2}{r_2} \cdot (r_1 + r_2 - r)$, where s_i are the sizes of the successors, r_i are the corresponding tuple sizes, r is the size of a

sizes of the successors, r_i are the corresponding tuple sizes, r is the size of a tuple over the common attributes and p is the matching probability

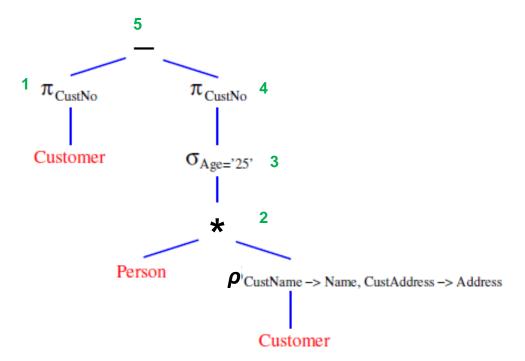
- for a union node the assigned size is $s_1 + s_2 p \cdot s_1$ with the probability p for tuple of R_1 to coincide with a tuple over R_2
- for a difference node the assigned size is $s_1 \cdot (1-p)$ where (1-p) is probability that tuple from R_1 -relation does not occur as tuple in R_2 -relation

- Person = {Name, Age, Address} with minimal key {Name, Address}
- Customer = {CustNo, CustName, CustAddress} with minimal key {CustNo} and foreign key [CustName, CustAddress] ⊆ Person[Name, Address]

attribute	domain	average length
Name	VARCHAR(30)	15
Address	VARCHAR(50)	30
CustName	VARCHAR(30)	15
CustAddress	VARCHAR(50)	30

- Assume that the fixed number of bits for storing the age of a person is 8,
 - For values up to $2^8 = 256$
- assume to have 1000 customers in our database, and 1010 different people
- assume that there are exactly 5% of customers aged `25', the value for a_c is 0.05,

• $\pi_{\text{CustNo}}(\text{Customer}) - \pi_{\text{CustNo}}(\sigma_{\text{Age} = `25'}(\text{Person } * \rho_{\text{CustName} \rightarrow \text{Name}, \text{CustAddrss} \rightarrow \text{Address}}(\text{Customer})))$



• Compute the size of tuptle of **Customer**

 $r_{customer} = 15 \cdot 8 + 10 + 30 \cdot 8 = 370$ bits

- Note: we need 10 bits to store the customer number, if there are 1,000 customers (2¹⁰ = 1, 024)
- Average size of relation Customer

 $S_{customer} = 1,000 \cdot 370 = 370,000$ bits

• Computer the size of tuple **Person**

 $r_{person} = 15 \cdot 8 + 8 + 30 \cdot 8 = 368$ bits

• Average size of a relation over Person:

*S*_{person} = 1, 010 · 368 = 371, 680 bits

- For the join node (**node 2**), the probability $p = \frac{1}{1010}$
- The attributes of the relation resulted from the join are:
- {Name, Address, Age, Customer}

 $r_2 = r_{\text{Name}} + r_{\text{Address}} + r_{\text{Age}} + r_{\text{Customer}}$ =15 · 8 + 30 · 8 + 8 + 10 =378 bits

Average size of the relation of the join node

$$S_2 = \frac{s_{person}}{r_{person}} \cdot \frac{1}{1010} \cdot \frac{s_{customer}}{r_{customer}} r_2 = 1000 \cdot 378 = 378,000$$
 Customer

 $1 \pi_{\text{CustNo}}$

Customer

Person

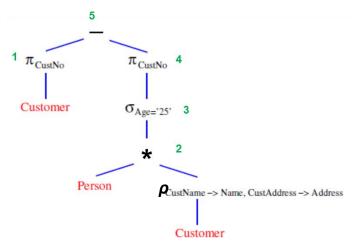
 π_{CustNo} 4

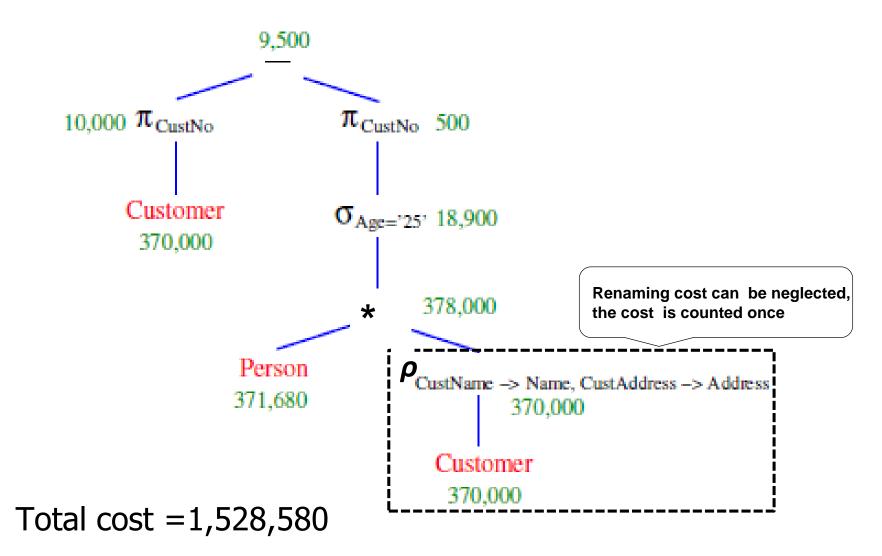
OAge='25' 3

P_{CustName} -> Name, Cust

- For selection node $\sigma_{Age = 25'}$ (node 3), $a_c = 5\%$ $S_3 = 0.05 \cdot 378,000 = 18,900$ bits
- For project node π_{CustNo} (**node 4**), *C* = 0% $S_4 = 18,900 \cdot 10/378 = 500$ bits

- For the projection π_{CustNo} (**node 1**), C = 0% $s_1 = 370,000 \cdot 10/370 = 10,000$ bits
- For the difference (**node 5**), p = 5% $s_5 = 10,000 \cdot (1 - 0.05) = 10,000 \cdot 0.95 = 9,500$ bits





SWEN 304/435

Cost Related Catalog Content

- For the purpose of a query cost estimate, a Catalog should contain following information for each base relation:
 - Number of tuples (= records) n
 - Let n_s (0 ≤ n_s ≤ n) be the number of tuples that satisfy selection condition
 - Number of blocks *b*
 - Blocking factor *f* (= the number of tuples that fit into one block
 - Available access methods and access attributes:
 - Access methods: sequential, indexed, hashed
 - Access attributes: primary key, indexing attributes,
 - The number of levels *h* of each index
 - The number of distinct values *d* of each attribute

/ictoria

Cost Functions of Select Operation

• Remark:

Victoria

Linear search (neither indexes nor hash functions provided)

 $C = b + \lceil n_s / f \rceil$, hence O(n)

read write

- Unique key index (B⁺-tree):
 - If selection condition is K = k:

 $C = h + 1 + \lceil 1 / f \rceil$

Hence $O(\log n)$ – index height *h* is proportional to $\log n$

 If selection condition is k₁ ≤ K ≤ k₂ and suppose n_s ≤ n tuples satisfy the condition:

$$C = h + \lceil n_s / m \rceil + n_s + \lceil n_s / f \rceil$$

Hence $O(\max\{\log n, n_s\})$

the number of tree leaves containing key values $k_1 \le K \le k_2$

Cost Functions of Select Operation

- Secondary index (B⁺-tree) on secondary key Y
 - $n_s \leq d(Y)$ random tuples satisfy condition Y = y
 - each Y value has a pointer to a sequence of blocks containing up to p pointers to tuples in the data area
 - the height *h* of the tree is proportional to log(d(Y))

$$C = h + \lceil n_s / p \rceil + n_s + \lceil n_s / f \rceil,$$

• Hence $O(n_s)$

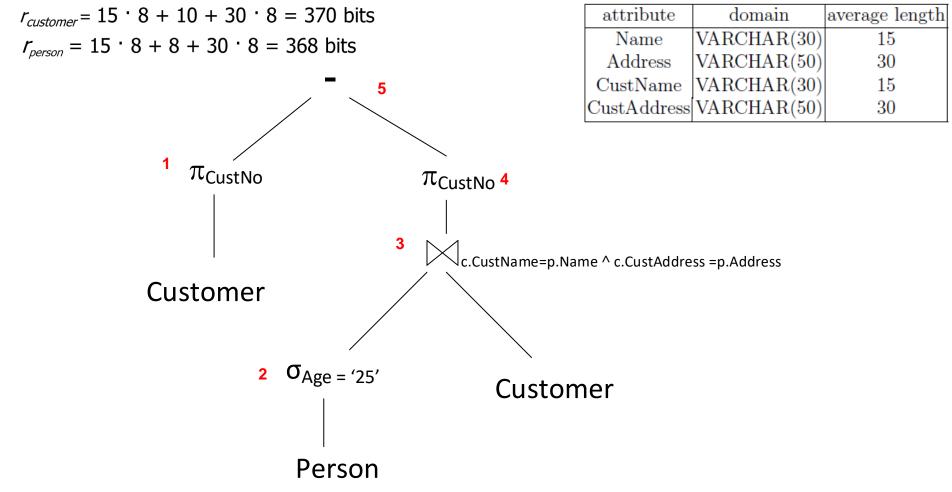
Exercise

Victoria

Whare Wānanga poko o te Ika a Māu **Tajā B**

Compute the total cost of the following query tree

- Person = {Name, Age, Address} with minimal key {Name, Address}
- Customer = {CustNo, CustName, CustAddress} with minimal key {CustNo} and foreign key [CustName, CustAddress] ⊆ Person[Name, Address]



Exercise

Victoria

Compute the total cost of the following query tree

- Person = {Name, Age, Address} with minimal key {Name, Address}
- Customer = {CustNo, CustName, CustAddress} with minimal key {CustNo} and foreign key [CustName, CustAddress] ⊆ Person[Name, Address]

