
Lecturer: Dr Hui Ma
Engineering and Computer Science

Query Optimisation
Tutorial

SWEN304/SWEN435

Query Computation Costs for Unary Operators

SWEN 304/435

Query Computation Costs for Binary Operators

SWEN 304/435

Estimating the Size of Relations

SWEN 304/435

Estimating the Size of Intermediate Results

SWEN 304/435

Natural join needs to
remove duplicate attributes
For equi-join, r = 0

Estimating the Size of Intermediate Results
 Person = {Name, Age, Address} with minimal key {Name,

Address}
 Customer = {CustNo, CustName, CustAddress} with minimal

key {CustNo} and foreign key [CustName, CustAddress]
Person[Name, Address]

.

SWEN 304/435

Assumptions

 Assume that the fixed number of bits for storing
the age of a person is 8,
 For values up to 28=256

 assume to have 1000 customers in our database,
and 1010 different people

 assume that there are exactly 5% of customers
aged ‘25’, the value for ac is 0.05,

SWEN 304/435

 CustNo(Customer) - CustNo(σAge = ‘25’ (Person *
ρCustName→Name,CustAddrss→Address (Customer)))

SWEN 304/435

Estimating the Size of Intermediate Results

2

3

41

5

*
ρ

SWEN 304/435

Estimating the Size of Intermediate Results
 Compute the size of tuptle of Customer

rcustomer = 15 · 8 + 10 + 30 · 8 = 370 bits
 Note: we need 10 bits to store the customer number, if

there are 1,000 customers (210 = 1, 024)
 Average size of relation Customer

scustomer = 1, 000 · 370 = 370, 000 bits

 Computer the size of tuple Person
rperson = 15 · 8 + 8 + 30 · 8 = 368 bits

 Average size of a relation over Person:
sperson = 1, 010 · 368 = 371, 680 bits

Estimating the Size of Intermediate Results

SWEN 304/435

ρ

Estimating the Size of Intermediate Results

 For the projection CustNo (node 1), C = 0%
s1 = 370,000 · 10/370 = 10,000 bits

 For the difference (node 5), p = 5%
s5 = 10, 000 · (1 − 0.05) = 10, 000 · 0.95 = 9, 500 bits

SWEN 304/435

ρ

Estimating the Size of Intermediate Results

 Total cost =1,528,580
SWEN 304/435

*
Renaming cost can be neglected,
the cost is counted once

ρ

SWEN 304/435

Cost Related Catalog Content
 For the purpose of a query cost estimate, a Catalog should

contain following information for each base relation:
 Number of tuples (= records) n
 Let ns (0 ns n) be the number of tuples that satisfy

selection condition
 Number of blocks b
 Blocking factor f (= the number of tuples that fit into

one block
 Available access methods and access attributes:
 Access methods: sequential, indexed, hashed
 Access attributes: primary key, indexing attributes,

 The number of levels h of each index
 The number of distinct values d of each attribute

 Remark:
 Linear search (neither indexes nor hash functions

provided)
C = b + ns / f , hence O(n)

 Unique key index (B+-tree):
 If selection condition is K = k:

C = h + 1 + 1 / f
Hence O(log n) – index height h is proportional to log n

 If selection condition is k1 K k2 and suppose ns < n
tuples satisfy the condition:

C = h + ns / m + ns + ns / f
Hence O(max{log n, ns})

SWEN 304/435

Cost Functions of Select Operation

the number of tree leaves containing key values
k1 K k2

read write

 Secondary index (B+-tree) on secondary keyY
 ns < d (Y) random tuples satisfy condition Y = y
 each Y value has a pointer to a sequence of blocks

containing up to p pointers to tuples in the data area
 the height h of the tree is proportional to log (d (Y))

C = h + ns / p + ns + ns / f ,

 Hence O(ns)

SWEN 304/435

Cost Functions of Select Operation

 Compute the total cost of the following query tree
Exercise

SWEN 304/435

Customer

Customer

Person

c.CustName=p.Name ˄ c.CustAddress =p.Address

σAge = ‘25’

CustNo CustNo

-

1

2

3

4

5

