Functional Dependencies Tutorial

SWEN304/SWEN435

Lecturer: Dr Hui Ma
Engineering and Computer Science
TE Whare wananca o tz dpoko o te ika a mãu
Ef He,

Outline

- Inferring FDs satisfied by Faculty relation
- Eliminating redundant functional dependencies
- Closure of a set of attributes
- Finding a minimal cover
- Relation Schema keys as a consequence of functional dependencies
- A Key Finding Algorithm
- Inferring additional keys

Universal Relation "Faculty"

StId	StName	NoPts	CourId	CoName	Grd	LecId	LeName
007	James	80	M114	Math	A+	777	Mark
131	Susan	18	C102	Java	B-	101	Ewan
007	James	80	C102	Java	A	101	Ewan
555	Susan	18	M114	Math	B+	999	Vladimir
007	James	80	C103	Algorithm	A+	99	Peter
131	Susan	18	M214	Math	ω	333	Peter
555	Susan	18	C201	C++	ω	222	Robert
007	James	80	C201	C++	A+	222	Robert
010	John	0	C101	Inet	ω	820	Ray

FDs of the Faculty Relation Schema

- Suppose the rules of behavior in UoD dictate the following functional dependencies are valid
$F=\{$ StId \rightarrow StName + NoPts,
CourId \rightarrow CoName,
LeId \rightarrow LeName,
LeId \rightarrow CourId,
StId + CourId \rightarrow Grade,
StId + CourId \rightarrow LeId $\}$
- From the relation, one can infer that the following FDs are not satisfied
$\left.\begin{array}{l}\text { StName } \rightarrow \text { SIId, } \\ \text { CourId } \rightarrow \text { LeId, } \\ \text { LeId } \rightarrow \text { StId, } \\ \text { StId } \rightarrow \text { Grade, }, \ldots\end{array}\right\} \notin F$

Redundant Functional Dependencies

$U=\{A, B, C, D\}$

- $F=\{A \rightarrow B, B \rightarrow C, C \rightarrow D, A B \rightarrow D, A \rightarrow C, A \rightarrow D, B C \rightarrow D\}$
- $F_{1}=\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- Use inference rules to show that F can be replaced by F_{1}
- This way works fine for small sets of FDs (and F_{1} is known)
- The other way would be to compute closures (and F_{1} is known)
- The best way is to look directly for the minimal cover of F

Inference Rules

- Given U, F, and $X, Y, Z, W \subseteq U$

1. (Reflexivity) $Y \subseteq X \vDash X \rightarrow Y$ (trivial FD)
2. (Augmentation) $X \rightarrow Y \wedge W \subseteq Z \vDash X Z \rightarrow Y W$ (partial FD)
3. (Transitivity) $X \rightarrow Y \wedge Y \rightarrow Z \vDash X \rightarrow Z$ (transitive FD)
4. (Decomposition) $X \rightarrow Y Z \vDash X \rightarrow Y \wedge X \rightarrow Z$
5. (Union) $X \rightarrow Y \wedge X \rightarrow Z$ ミ $X \rightarrow Y Z$
6. (Pseudo transitivity) $X \rightarrow Y \wedge W Y \rightarrow Z \vDash W X \rightarrow Z$
(if $W=\varnothing$, pseudo transitivity turns into transitivity)

- Inference rules 1, 2 and 3 are known as Armstrong's inference rules

Functional Dependencies

- Show that $A B \rightarrow E$ can be inferred form $F=\{D \rightarrow E, B C$ $\rightarrow D, A \rightarrow C, A \rightarrow D\}$ using Armstrong's inference rules. Derivation tree

$A \rightarrow D$ (given) $D \rightarrow E$ (given)
 (T)

${\underset{A B \rightarrow E}{(\mathrm{R})} /(\mathrm{T})}_{A B \rightarrow E}$

Computing the Closure of F

- $F_{1}=\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- $F_{1}{ }^{+}=\left\{\varnothing \rightarrow \varnothing, A \rightarrow \varnothing, A \rightarrow A, A \rightarrow B, A \rightarrow C, A \rightarrow D_{1}\right.$ $B \rightarrow \varnothing, B \rightarrow B, B \rightarrow C, B \rightarrow D, C \rightarrow \varnothing, C \rightarrow C, C \rightarrow D$, $D \rightarrow \varnothing, D \rightarrow D, A B \rightarrow \varnothing, A B \rightarrow A, A B \rightarrow B, A B \rightarrow C, A B$ $\rightarrow D, A C \rightarrow \varnothing, A C \rightarrow A, A C \rightarrow B, A C \rightarrow C, A C \rightarrow D, A D$ $\rightarrow \varnothing, A D \rightarrow A, A D \rightarrow B, A D \rightarrow C, A D \rightarrow D, B C \rightarrow \varnothing, B C$ $\rightarrow B, B C \rightarrow C, B C \rightarrow D, B D \rightarrow \varnothing, B D \rightarrow D, B D \rightarrow C, B D$ $\rightarrow D, C D \rightarrow \varnothing, C D \rightarrow C, C D \rightarrow D, A B C \rightarrow \varnothing, A B C \rightarrow A$, $A B C \rightarrow B, A B C \rightarrow C, A B C \rightarrow C, A B C \rightarrow D, A B D \rightarrow \varnothing$, $A B D \rightarrow A, A B D \rightarrow B, A B D \rightarrow C, A B C \rightarrow D, B C D \rightarrow \varnothing$, $B C D \rightarrow B, B C D \rightarrow C, B C D \rightarrow D, A B C D \rightarrow \varnothing, A B C D \rightarrow A$, $A B C D \rightarrow B, A B C D \rightarrow C, A B C D \rightarrow D\}$

Closure of a Set of Attributes

- Given U, F and $X \subseteq U$
- Closure of X with regard to F, defined as

$$
X_{F}^{+}=\left\{A \in U \mid X \rightarrow A \in F^{+}\right\}
$$

is used in finding the minimal cover of F

Attribute Closure Algorithm

```
\(X^{+}=X ; \quad / /\) according to reflexivity
old \(X^{+}=\varnothing\)
while (old \(X^{+} \subset X^{+}\)) \{
    old \(X^{+}=X^{+}\)
    for (each FD \(Y \rightarrow Z \in F\) ) \{
        if \(\left(Y \subseteq X^{+}\right)\{\)
        \(X^{+}=X^{+} \cup Z\); //according to
        // augmentation \& transitivity
        \}
        \}
\}
```


Exercise 1: Computing the Closure of X (5 minutes)

- $R=A B C D E, F=\{D \rightarrow E, B C \rightarrow D, A \rightarrow C, A \rightarrow D\}$, compute closure of
- $A^{+}=$
- $B^{+}=$
- $C^{+}=$
- $D^{+}=$
- $E^{+}=$
- $A B, A C, A D, A E, B C, B D, B E, C D, C E, D E, A B C, A B D . .$.

Exercise 1: Computing the Closure of X

- $R=A B C D E, F=\{D \rightarrow E, B C \rightarrow D, A \rightarrow C, A \rightarrow D\}$
- $A^{+}=A C D E$
- $B^{+}=B$
- $C^{+}=C$
- $D^{+}=D E$
- $E^{+}=E$
- $B C^{+}=B C D E$
- $A B^{+}=A B C D E=R, A B$ is a schema key
- $A B^{+}=A B C^{+}=A B D^{+}=A B E^{+}=A B C D^{+}=A B C E^{+}=$ $A B D E^{+}=A B C D E^{+}$(all the supersets of $A B$)
- Note: we need to compute closures for all subsets of attributes of relation R to determine keys for R. Here there are 31 subsets.

Minimal Cover of a Set of FDs F

- A set of FDs G is a minimal cover of a set Fif:

1. each FD in G has a single attribute on its right hand side
2. G is left reduced (no one FD in G has any superfluous attribute on its left hand side, (a left reduced FD $=$ total FD, a not reduced $\mathrm{FD}=$ partial FD))

$$
(\forall X \rightarrow A \in G)(\forall B \in X)\left((X-B) \rightarrow A \notin G^{+}\right)
$$

3. G is non redundant (doesn't contain any trivial or pseudo transitive FD)

$$
(\forall X \rightarrow A \in G)\left((G-\{X \rightarrow A\})^{+} \subset G^{+}\right),
$$

4. $F^{+}=G^{+}$

Finding a Minimal Cover Algorithm

1. Set $G:=F$
2. Replace each FD $X \rightarrow\left\{A_{1,}, A_{2}, \ldots, A_{n}\right\}$ in G with the following n FDs $X \rightarrow A_{1}, X \rightarrow A_{2}, \ldots, X \rightarrow A_{n}$
3. Do left reduction
for each FD $X \rightarrow A$ in G do
for each B in X do

$$
\begin{aligned}
& \text { if } A \in(X-B)^{+}{ }_{G} \text { then } \quad \text { Replace } X \rightarrow A b y(X-B) \rightarrow A \\
& G:=(G-\{X \rightarrow A\}) \cup\{(X-B) \rightarrow A\}
\end{aligned}
$$

4. Eliminate redundant FDs for each FD $X \rightarrow A$ in G do

$$
\text { Remove } X \rightarrow A
$$

if $A \in(X)^{+}{ }_{G-\{X \rightarrow A\}}$ then $G:=G-\{X \rightarrow A\}$

Computing a Minimal Cover Example 1

- $U=\{A, B, C, D, E\}$
- $F=\{A \rightarrow B, A C \rightarrow B, A \rightarrow A, A D \rightarrow C E, B \rightarrow D E\}$
- After step 2 of the algorithm
$G=\{A \rightarrow B, A C \rightarrow B, A \rightarrow A, A D \rightarrow C, A D \rightarrow E, B \rightarrow D, B$ $\rightarrow E\}$
- After step 3 of the algorithm
$G=\{A \rightarrow B, A \rightarrow A, A \rightarrow C, A \rightarrow E, B \rightarrow D, B \rightarrow E\}$
- After step 4 of the algorithm
$G=\{A \rightarrow B, A \rightarrow C, B \rightarrow D, B \rightarrow E\}$

Exercise 2: Computing a Minimal Cover

- Given:

$$
\begin{aligned}
& U=\{A, B, C, D, E\} \\
& F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}
\end{aligned}
$$

- Compute the two possible minimal covers of F

1) In the fourth step of the minimal cover algorithm:

- first consider whether FD $A \rightarrow B$ is redundant
- then consider whether FD $A \rightarrow C$ is redundant

2) In the second attempt

- consider FD $A \rightarrow C$ first, and
- then FD $A \rightarrow B$

Exercise 2: Computing a Minimal Cover (10 minutes)

$$
\begin{aligned}
& U=\{A, B, C, D, E\} \\
& \quad F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}
\end{aligned}
$$

1) : first consider whether FD $A \rightarrow B$ is redundant

- then consider whether FD $A \rightarrow C$ is redundant

Consider $A \rightarrow B$

$$
\begin{gathered}
A^{+}{ }_{F^{\prime}-\{A \rightarrow B\}}=A C B, B \text { is in } \mathrm{A}^{+}{ }_{\mathrm{F}^{\prime}-\{\mathrm{A} \rightarrow \mathrm{D}\}} \text {. so remove } A \rightarrow B \text { from } F^{\prime} \\
\text { So } \mathrm{F}^{\prime}=\{A \rightarrow C, B \rightarrow C, C \rightarrow B\}
\end{gathered}
$$

Consider $A \rightarrow C$
$A^{+}{ }_{F^{\prime}-\{A \rightarrow C\}}=A, C$ is in $A^{+}{ }_{F^{\prime}-\{A \rightarrow C\}}$. Keep $A \rightarrow C$ in F^{\prime}, no change
Consider $B \rightarrow C$
$B^{+}{ }_{F^{\prime}-\{b \rightarrow C\}}=B, C$ is in $B^{+}{ }_{F^{\prime}-\{B \rightarrow C\}}$. Keep $B \rightarrow C$ in F^{\prime}, no change
Consider $C \rightarrow B$
$C^{+}{ }_{F^{\prime}-\{C \rightarrow B\}}=C, B$ is in $C^{+}{ }_{F^{\prime}-\{C \rightarrow B\}}$. Keep $C \rightarrow B$ in F^{\prime}, no change
Therefore the minimal cover is $F^{\prime}=\{A \rightarrow C, B \rightarrow C, C \rightarrow B\}$
Note: this example demonstrates step 4 of the algorithm

Exercise 2: Computing a Minimal Cover (10 minutes)

$$
\begin{aligned}
& U=\{A, B, C, D, E\} \\
& \quad F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}
\end{aligned}
$$

2) : consider FD $A \rightarrow C$ first, and

- then FD $A \rightarrow B$

A Key Finding Algorithm

$X:=R$
 (* X is initialized as a super key*)

for each A in X do

$$
\begin{aligned}
& \text { if } R \subseteq(X-A)^{+} F \text { then } \\
& X:=X-A
\end{aligned}
$$

- Example
- $R=\{A, B, C\}, F=\{A \rightarrow B, B \rightarrow C\}$
- $X=A B C$
- $(X-A)^{+}{ }_{F}=B C$
(* The superkey is still $X=A B C^{*}$)
- $(X-B)^{+}{ }_{F}=A B C$
(* The superkey is now $X=A C^{*}$)
- $(X-C)^{+}{ }_{F}=A B C$
(* The superkey is now $X=A *$)
- $K(R)=A$

Exercise 3: Finding Keys (10 minutes)

1. $R=\{A, B, C\}, F=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
2. $R=\{D, E, F\}, F=\{D \rightarrow E, E \rightarrow D, D \rightarrow F\}$
3. $R=\{G, H, I\}, F=\{G \rightarrow H, G \rightarrow I\}$
4. $R=\{C, E, J\}, F=\{C E \rightarrow J\}$
5. $R=\{C, E, G\}, F=\{ \}$
6. $R=\{I, L\}, F=\{I \rightarrow L\}$

Inferring Additional Keys

- Let $X=\left\{A_{1, \ldots}, A_{j} \ldots, A_{k}\right\}$ be a relation schema (R, F) key, where $X \subseteq R$,
- If there is $W \rightarrow Z \in F(Z \nsubseteq W, Z \subseteq X$ and $W \nsubseteq X)$
- Then $Y=(X-Z) \cup W$ is also a relation schema (R, F) key,
- Example:
$R=\{A, B, C, D\}, F=\{A B \rightarrow C, C \rightarrow D, D \rightarrow B\}$
$X=A B$ is a key of (R, F)
- since $D \rightarrow B \in F, B \subseteq A B$
$Y=A B-B \cup D=A D$ is another key of (R, F)
- since $C \rightarrow D \in F$
$Z=A C$ is a key of (R, F), as well

Exercise 4: Finding Keys

$R=\{$ StdId, StName, NoPts, CourId, CoName, LecId, LeName, Grade \}
$F=\{$ StdId \rightarrow StName + NoPts,
CourId \rightarrow CoName,
LecId \rightarrow LeName,
LecId \rightarrow CourId,
StdId + CourId \rightarrow Grade, StdId + CourId \rightarrow LecId $\}$

- $K_{1}($ Faculty $)=$ StdId + CourId
- $K_{2}($ Faculty $)=$?

