
Lecturer: Dr Hui Ma

Engineering and Computer Science

NORMALIZATION

Tutorial

SWEN304/SWEN439

1

Outline

▪ Normal forms

▪ 3NF normalization: Synthesis algorithm

▪ BCNF normalization: Decomposition algorithm

SWEN304/SWEN439 week9_Tut: Normalization

2

Understanding Normal Forms

▪ The fact that each relation schema key functionally
determines each relation schema attribute is crucial
for understanding 2NF, 3NF, and BCNF

▪ e.g.

R = {A, B, C, D }, F = {AB →C, B →D }, K = AB

AB →A, AB →B trivial FDs

AB →C in F

B →D with D partially functional depends on B

Scheme key functionally determines every attribute
in the schema

SWEN304/SWEN439 week9_Tut: Normalization

3

▪ A relation schema is in first normal form (1NF) if
the domain of its each attribute has only atomic
values

▪ No relation schema attribute is allowed to be
composite or multi-valued

▪ A relation schema R is in second normal form
(2NF) if no non-prime attribute in R is partially
functionally dependent on any relation schema R
key

First Normal Form and Second Normal Form

SWEN304/SWEN439 week9_Tut: Normalization

4

First Normal Form Example

▪ Grades ({StudId, StName, NoOfPts, CourId, Grd },

{StudId →StName + NoOfPts, StudId + CourId →Grd })

▪ K (Grades) = StudId + CourId

▪ in 1NF but not in 2NF

StudId CourId StName NoOfPts Grd

007 M114 James 80 A+

131 C102 Susan 18 B-

007 C102 James 80 A

555 M114 Susan 18 B+

007 C103 James 80 A+

131 M214 Susan 18 

A new student

can not be

inserted until

she/he enrolls

If a student

passes a new

exam, all the

tuples have to be

examined…

SWEN304/SWEN439 week9_Tut: Normalization

5

Second Normal Form

Lecturer ({LecId, LeName, CourId, CoName },

{LecId →LeName, LecId →CourId,

LecId →CoName, CourId →CoName })

K (Lecturer) = LecId

CourId CoName LecId LeName

M114 Math 777 Mark

C102 Java 101 Ewan

M114 Math 999 Vladimir

C103 Algorith 99 Peter

M214 Math 333 Peter

C201 C++ 222 Robert

C101 Inet 820 Ray

New Course data

can not be

inserted without

knowing who is

going to lecture it

If a lecturer

resigns, Course

data will be lost

SWEN304/SWEN439 week9_Tut: Normalization

6

▪ A relation schema N (R, F) with a set of keys K (N) is in
third normal form (3NF) if for each nontrivial
functional dependency X →A holds in F , either X is a
superkey of N, or A is a prime attribute of N

▪ A relation schema is in third normal form (3NF) if it is in
2NF, and no non-prime attribute is transitively
functionally dependent on any relation schema key

▪ The relation schema (R, F) is in the Boyce-Codd
Normal Form (BCNF), if the left-hand side of each
nontrivial functional dependency in F contains a relation
schema key

Third Normal Form and BCNF

SWEN304/SWEN439 week9_Tut: Normalization

7

Third Normal Form

▪ Employee ({EmpId, EmpName, SSN },

{EmpId→SSN, SSN→EmpId,

EmpId→EmpName, SSN→EmpName }),

K (Employee) = {EmpId, SSN }

▪ is in 3NF (even in BCNF)?

▪ LHS of each nontrivial FD in F is a superkey

SWEN304/SWEN439 week9_Tut: Normalization

8

Third Normal Form

▪ Lecturer({LecId, LeName, CourId }, {LecId →LeName,
LecId →CourId },

K (Lecturer) = LecId, Null (Lecturer, CourId) = Yes

▪ is in 3NF (and even in BCNF)

LecId LeName CourId

777 Mark M114

101 Ewan C102

999 Vladimir M114

99 Peter C103

333 Peter M214

222 Robert C201

444 Ian 

CourId CoName

M114 Math

C102 Java

C103 Algorithm

M214 Math

C201 C++

C101 Inet

These relations
are free of update
anomalies:

• Ian is not
teaching any
course

• C101 does not
have a teacher

SWEN304/SWEN439 week9_Tut: Normalization

9

3NF but not BCNF

LecId LeName CourId

777 Mark M114

101 Ewan C102

999 Vladimir M114

99 Peter C103

333 Peter M214

222 Robert C201

444 Ian 

LecId StudId CourId Grade

777 007 M114 A+

101 131 C102 B+

101 007 C102 B

999 555 M114 C

99 007 C103 A

333 131 M214 

222 555 C201 A

222 007 C201 A+

CourId CoName

M114 Math

C102 Java

C103 Algorit

M214 Math

C201 C++

C101 Inet

StudId StName

007 James

131 Susan

555 Susan

909 Paul

3NF, but not BCNF

Problem:

▪ Information about the relationship between lecturers and

courses is stored twice

▪ Update of CourId for any LecId need to check LecId → CourId

▪ Delete a lecture will delete relationship of student and course.

Given Stud_Cour_Lec ({StudId, CourId, LecId, Grade },
{LecId → CourId, StudId+CourId →LecId, StudId+CourId →Grade })

SWEN304/SWEN439 week9_Tut: Normalization

10

Lossless 3NF Decomposition

Synthesis Algorithm (simplified)

Input: (U, F)

Output: S = {(Ri, Ki)|i = 1,…, n } (*Ki is the relation
schema key*)

1. Find a minimal cover G of F

2. Group FDs from G according to the same left-hand side.
For each group of FDs

(X →A1, X →A2,…, X →Ak),

make one relation schema in S

({X, A1, A2,…, Ak }, X)

3. If none of relation schemes in S contain a key of (U, F),
create a new relation scheme in S that will contain only

a key of (U, F)
SWEN304/SWEN439 week9_Tut: Normalization

11

Example 1: 3NF Decomposition (1)

▪ Faculty = (U, F)

U = {StudId, StName, NoPts, CourId, CoName, LecId,
LeName, Grade }

F = {StudId →StName, StudId →NoPts, CourId →
CoName, LecId →LeName, LecId →CourId,
StudId + CourId →Grade, StudId + CourId →LecId }

▪ Step 1. Minimal cover is F

Step 2. Groups:

(StudId →StName, StudId →NoPts)
(CourId → CoName)
(LecId →LeName, LecId →CourId)

(StudId + CourId →Grade, StudId + CourId →LecId)

SWEN304/SWEN439 week9_Tut: Normalization

12

Example 1: 3NF Decomposition (2)

▪ Step 2 Relation schemas:

S = {(Student (StudId, StName, NoOfPts),

Course (CourId, CoName),

Lecturer (LecId, LeName, CourId),

St_Le_Pa (StudId, CourId, LecId, Grade)}

▪ Step 3 Universal relation key is in St_Le_Pa

(StudId + CourId)+ ={StudId, StName, NoPts, CourId,
CoName, LecId,LeName, Grade }

▪ So, the decomposition is lossless and dependency
preserving

SWEN304/SWEN439 week9_Tut: Normalization

13

Example 1: 3NF Decomposition (3)

StudId StName NoPts

007 James 80

131 Susan 18

555 Susan 18

010 John 0

Student

CourId CoName

C102 Java

M114 Math

C103 Algorith

M214 Math

C201 C++

Course

Faculty database

SWEN304/SWEN439 week9_Tut: Normalization

14

Example 1: 3NF Decomposition (4)

CourId StudId LecId Grd

M214 007 333 A+

C102 131 101 B-

C102 007 101 A

M114 555 999 B+

C103 007 99 A+

M214 131 333 

C201 555 222 

C201 007 222 A+

C101 010 820 

CourId LecId LeName

C102 101 Ewan

M114 999 Vladimir

C103 99 Peter

M214 333 Peter

C201 222 Robert

C101 820 Ray

Lecturer

Cour_Stud_Lec

An update

anomaly

would arise
if a lecturer

decides to

resign or
change the

course

Faculty database

SWEN304/SWEN439 week9_Tut: Normalization

15

Example 2: 3NF Decomposition (exercise)

▪ U = {EmpId, LicenceNo, IRNo, EmpName }

F = {EmpId →LicenceNo, LicenceNo →EmpId,
EmpId →IRNo, IRNo →EmpId, EmpId →EmpName }

▪ Is U in 3NF? If not decompose it in 3NF

SWEN304/SWEN439 week9_Tut: Normalization

16

Example 3: 3NF Decomposition (exercise)

▪ U = {A, B, C, D }, F = {A →B, B → C }

▪ Is U in 3NF? If not decompose it into 3NF

SWEN304/SWEN439 week9_Tut: Normalization

17

Decomposition algorithm:

Input: (U, F)

Output: S = {(Ri, Fi)|i = 1,…, n }

1. Set S := {(U, F)}

2. While there is a relation schema (R, G) in S that is not
in BCNF do

2.1 Choose a functional dependency X →Y in G that

violates BCNF,

2.2 Replace (R, G) with (R -Y, G |R-Y) and (XY, G |XY)

▪ The final result will be a lossless BCNF-decomposition

BCNF Decomposition

SWEN304/SWEN439 week9_Tut: Normalization

18

Projection of a Set of FDs

Examples:

▪ F1 = {A →B, B →C, C →D }, W = {A, D }

F1 |W = {A →D }

▪ F2 = {A →B, B →C, C →A }, W = {A, B }

F2 |W = {A →B, B →A }

Exercise: F3 = {AB →C, C →D, D →B }, W = {A, C, D },

F3 |W = ?

SWEN304/SWEN439 week9_Tut: Normalization

19

Example 4: BCNF Decomposition (1)

▪ Take the Faculty = (U, F) as in Example 1

U = {StudId, StName, NoPts, CourId, CoName, LecId, LeName,

Grade }

F = {StudId →StName + NoPts, CourId →CoName,

LecId →LeName + CourId, StudId + CourId →Grade + LecId }

K = {StudId + CourId, StudId + LecId }

▪ Step 2

Faculty is not BCNF due to, say, StudId →StName + NoPts, so

S1 = {Student ({StudId, StName, NoOfPts },{StudId
→StName + NoPts })

Faculty1 ({StudId, CourId, CoName, LecId, LeName, Grade },
{CourId →CoName, LecId →LeName + CourId,

StudId + CourId →Grade + LecId })}

SWEN304/SWEN439 week9_Tut: Normalization

20

Example 4: BCNF Decomposition (2)

▪Student is BCNF, but Faculty1 is not due to

CourId → CoName

▪So decompose alone CourId → CoName

S2 = {

Student ({StId, StName, NoPts }, {StId →StName + NoPts }),
Course ({CourId, CoName }, {CourId → CoName }),

Faculty2 ({StId, CourId, LecId, LeName, Grade }, {LecId
→LeName + CourId, StId + CourId →Grade + LecId })

}

▪ Now, Course is BCNF, but Faculty2 is not due to

LecId →LeName + CourId

SWEN304/SWEN439 week9_Tut: Normalization

21

Example 4: BCNF Decomposition (3)

S3 = {Student ({StId, StName, NoPts }, {StId →StName +
NoPts }),

Course ({CourId, CoName }, {CourId → CoName }),

Lecturer ({LecId, CourId, LeName }, {LecId →LeName
+CourId }),

Stud_Lect ({StId, LecId, Grade }, {StId + LecId →Grade })}

▪ S3 is BCNF

▪ StudId + CourId → Grade is in

▪ But FD StudId + CourId → LecId is lost

+

=

)(
n

1i

iF

SWEN304/SWEN439 week9_Tut: Normalization

22

Example 5: FDs cannot be preserved (3)

LecId StudId

777 007

101 131

101 007

999 555

99 007

333 131

222 555

222 007

StudId CourId Grade

007 M114 A+

131 C102 B+

007 C102 B

555 M114 C

007 C103 A

131 M214 

555 C201 A

007 C201 A+

1. If a lecturer resigns or starts teaching another course, students’

grades are not lost

2. Information about the relationship between lecturers and

courses is stored only once

3. If a lecturer resigns, we loose only information regarding

his/her relationship with students

LecId CourId

777 M114

101 C102

999 M114

99 C103

333 M214

222 C201

444 

SWEN304/SWEN439 week9_Tut: Normalization

