
Lecturer: Dr Hui Ma

Engineering and Computer Science

NORMALIZATION

Tutorial

SWEN304/SWEN439

1

Outline

▪ Normal forms

▪ 3NF normalization: Synthesis algorithm

▪ BCNF normalization: Decomposition algorithm

SWEN304/SWEN439 week9_Tut: Normalization

2

Understanding Normal Forms

▪ The fact that each relation schema key functionally
determines each relation schema attribute is crucial
for understanding 2NF, 3NF, and BCNF

▪ e.g.

R = {A, B, C, D }, F = {AB →C, B →D }, K = AB

AB →A, AB →B trivial FDs

AB →C in F

B →D with D partially functional depends on B

Scheme key functionally determines every attribute
in the schema

SWEN304/SWEN439 week9_Tut: Normalization

3

▪ A relation schema is in first normal form (1NF) if
the domain of its each attribute has only atomic
values

▪ No relation schema attribute is allowed to be
composite or multi-valued

▪ A relation schema R is in second normal form
(2NF) if no non-prime attribute in R is partially
functionally dependent on any relation schema R
key

First Normal Form and Second Normal Form

SWEN304/SWEN439 week9_Tut: Normalization

4

First Normal Form Example

▪ Grades ({StudId, StName, NoOfPts, CourId, Grd },

{StudId →StName + NoOfPts, StudId + CourId →Grd })

▪ K (Grades) = StudId + CourId

▪ in 1NF but not in 2NF

StudId CourId StName NoOfPts Grd

007 M114 James 80 A+

131 C102 Susan 18 B-

007 C102 James 80 A

555 M114 Susan 18 B+

007 C103 James 80 A+

131 M214 Susan 18

A new student

can not be

inserted until

she/he enrolls

If a student

passes a new

exam, all the

tuples have to be

examined…

SWEN304/SWEN439 week9_Tut: Normalization

5

Second Normal Form

Lecturer ({LecId, LeName, CourId, CoName },

{LecId →LeName, LecId →CourId,

LecId →CoName, CourId →CoName })

K (Lecturer) = LecId

CourId CoName LecId LeName

M114 Math 777 Mark

C102 Java 101 Ewan

M114 Math 999 Vladimir

C103 Algorith 99 Peter

M214 Math 333 Peter

C201 C++ 222 Robert

C101 Inet 820 Ray

New Course data

can not be

inserted without

knowing who is

going to lecture it

If a lecturer

resigns, Course

data will be lost

SWEN304/SWEN439 week9_Tut: Normalization

6

▪ A relation schema N (R, F) with a set of keys K (N) is in
third normal form (3NF) if for each nontrivial
functional dependency X →A holds in F , either X is a
superkey of N, or A is a prime attribute of N

▪ A relation schema is in third normal form (3NF) if it is in
2NF, and no non-prime attribute is transitively
functionally dependent on any relation schema key

▪ The relation schema (R, F) is in the Boyce-Codd
Normal Form (BCNF), if the left-hand side of each
nontrivial functional dependency in F contains a relation
schema key

Third Normal Form and BCNF

SWEN304/SWEN439 week9_Tut: Normalization

7

Third Normal Form

▪ Employee ({EmpId, EmpName, SSN },

{EmpId→SSN, SSN→EmpId,

EmpId→EmpName, SSN→EmpName }),

K (Employee) = {EmpId, SSN }

▪ is in 3NF (even in BCNF)?

▪ LHS of each nontrivial FD in F is a superkey

SWEN304/SWEN439 week9_Tut: Normalization

8

Third Normal Form

▪ Lecturer({LecId, LeName, CourId }, {LecId →LeName,
LecId →CourId },

K (Lecturer) = LecId, Null (Lecturer, CourId) = Yes

▪ is in 3NF (and even in BCNF)

LecId LeName CourId

777 Mark M114

101 Ewan C102

999 Vladimir M114

99 Peter C103

333 Peter M214

222 Robert C201

444 Ian

CourId CoName

M114 Math

C102 Java

C103 Algorithm

M214 Math

C201 C++

C101 Inet

These relations
are free of update
anomalies:

• Ian is not
teaching any
course

• C101 does not
have a teacher

SWEN304/SWEN439 week9_Tut: Normalization

9

3NF but not BCNF

LecId LeName CourId

777 Mark M114

101 Ewan C102

999 Vladimir M114

99 Peter C103

333 Peter M214

222 Robert C201

444 Ian

LecId StudId CourId Grade

777 007 M114 A+

101 131 C102 B+

101 007 C102 B

999 555 M114 C

99 007 C103 A

333 131 M214

222 555 C201 A

222 007 C201 A+

CourId CoName

M114 Math

C102 Java

C103 Algorit

M214 Math

C201 C++

C101 Inet

StudId StName

007 James

131 Susan

555 Susan

909 Paul

3NF, but not BCNF

Problem:

▪ Information about the relationship between lecturers and

courses is stored twice

▪ Update of CourId for any LecId need to check LecId → CourId

▪ Delete a lecture will delete relationship of student and course.

Given Stud_Cour_Lec ({StudId, CourId, LecId, Grade },
{LecId → CourId, StudId+CourId →LecId, StudId+CourId →Grade })

SWEN304/SWEN439 week9_Tut: Normalization

10

Lossless 3NF Decomposition

Synthesis Algorithm (simplified)

Input: (U, F)

Output: S = {(Ri, Ki)|i = 1,…, n } (*Ki is the relation
schema key*)

1. Find a minimal cover G of F

2. Group FDs from G according to the same left-hand side.
For each group of FDs

(X →A1, X →A2,…, X →Ak),

make one relation schema in S

({X, A1, A2,…, Ak }, X)

3. If none of relation schemes in S contain a key of (U, F),
create a new relation scheme in S that will contain only

a key of (U, F)
SWEN304/SWEN439 week9_Tut: Normalization

11

Example 1: 3NF Decomposition (1)

▪ Faculty = (U, F)

U = {StudId, StName, NoPts, CourId, CoName, LecId,
LeName, Grade }

F = {StudId →StName, StudId →NoPts, CourId →
CoName, LecId →LeName, LecId →CourId,
StudId + CourId →Grade, StudId + CourId →LecId }

▪ Step 1. Minimal cover is F

Step 2. Groups:

(StudId →StName, StudId →NoPts)
(CourId → CoName)
(LecId →LeName, LecId →CourId)

(StudId + CourId →Grade, StudId + CourId →LecId)

SWEN304/SWEN439 week9_Tut: Normalization

12

Example 1: 3NF Decomposition (2)

▪ Step 2 Relation schemas:

S = {(Student (StudId, StName, NoOfPts),

Course (CourId, CoName),

Lecturer (LecId, LeName, CourId),

St_Le_Pa (StudId, CourId, LecId, Grade)}

▪ Step 3 Universal relation key is in St_Le_Pa

(StudId + CourId)+ ={StudId, StName, NoPts, CourId,
CoName, LecId,LeName, Grade }

▪ So, the decomposition is lossless and dependency
preserving

SWEN304/SWEN439 week9_Tut: Normalization

13

Example 1: 3NF Decomposition (3)

StudId StName NoPts

007 James 80

131 Susan 18

555 Susan 18

010 John 0

Student

CourId CoName

C102 Java

M114 Math

C103 Algorith

M214 Math

C201 C++

Course

Faculty database

SWEN304/SWEN439 week9_Tut: Normalization

14

Example 1: 3NF Decomposition (4)

CourId StudId LecId Grd

M214 007 333 A+

C102 131 101 B-

C102 007 101 A

M114 555 999 B+

C103 007 99 A+

M214 131 333

C201 555 222

C201 007 222 A+

C101 010 820

CourId LecId LeName

C102 101 Ewan

M114 999 Vladimir

C103 99 Peter

M214 333 Peter

C201 222 Robert

C101 820 Ray

Lecturer

Cour_Stud_Lec

An update

anomaly

would arise
if a lecturer

decides to

resign or
change the

course

Faculty database

SWEN304/SWEN439 week9_Tut: Normalization

15

Example 2: 3NF Decomposition (exercise)

▪ U = {EmpId, LicenceNo, IRNo, EmpName }

F = {EmpId →LicenceNo, LicenceNo →EmpId,
EmpId →IRNo, IRNo →EmpId, EmpId →EmpName }

▪ Is U in 3NF? If not decompose it in 3NF

SWEN304/SWEN439 week9_Tut: Normalization

16

Example 3: 3NF Decomposition (exercise)

▪ U = {A, B, C, D }, F = {A →B, B → C }

▪ Is U in 3NF? If not decompose it into 3NF

SWEN304/SWEN439 week9_Tut: Normalization

17

Decomposition algorithm:

Input: (U, F)

Output: S = {(Ri, Fi)|i = 1,…, n }

1. Set S := {(U, F)}

2. While there is a relation schema (R, G) in S that is not
in BCNF do

2.1 Choose a functional dependency X →Y in G that

violates BCNF,

2.2 Replace (R, G) with (R -Y, G |R-Y) and (XY, G |XY)

▪ The final result will be a lossless BCNF-decomposition

BCNF Decomposition

SWEN304/SWEN439 week9_Tut: Normalization

18

Projection of a Set of FDs

Examples:

▪ F1 = {A →B, B →C, C →D }, W = {A, D }

F1 |W = {A →D }

▪ F2 = {A →B, B →C, C →A }, W = {A, B }

F2 |W = {A →B, B →A }

Exercise: F3 = {AB →C, C →D, D →B }, W = {A, C, D },

F3 |W = ?

SWEN304/SWEN439 week9_Tut: Normalization

19

Example 4: BCNF Decomposition (1)

▪ Take the Faculty = (U, F) as in Example 1

U = {StudId, StName, NoPts, CourId, CoName, LecId, LeName,

Grade }

F = {StudId →StName + NoPts, CourId →CoName,

LecId →LeName + CourId, StudId + CourId →Grade + LecId }

K = {StudId + CourId, StudId + LecId }

▪ Step 2

Faculty is not BCNF due to, say, StudId →StName + NoPts, so

S1 = {Student ({StudId, StName, NoOfPts },{StudId
→StName + NoPts })

Faculty1 ({StudId, CourId, CoName, LecId, LeName, Grade },
{CourId →CoName, LecId →LeName + CourId,

StudId + CourId →Grade + LecId })}

SWEN304/SWEN439 week9_Tut: Normalization

20

Example 4: BCNF Decomposition (2)

▪Student is BCNF, but Faculty1 is not due to

CourId → CoName

▪So decompose alone CourId → CoName

S2 = {

Student ({StId, StName, NoPts }, {StId →StName + NoPts }),
Course ({CourId, CoName }, {CourId → CoName }),

Faculty2 ({StId, CourId, LecId, LeName, Grade }, {LecId
→LeName + CourId, StId + CourId →Grade + LecId })

}

▪ Now, Course is BCNF, but Faculty2 is not due to

LecId →LeName + CourId

SWEN304/SWEN439 week9_Tut: Normalization

21

Example 4: BCNF Decomposition (3)

S3 = {Student ({StId, StName, NoPts }, {StId →StName +
NoPts }),

Course ({CourId, CoName }, {CourId → CoName }),

Lecturer ({LecId, CourId, LeName }, {LecId →LeName
+CourId }),

Stud_Lect ({StId, LecId, Grade }, {StId + LecId →Grade })}

▪ S3 is BCNF

▪ StudId + CourId → Grade is in

▪ But FD StudId + CourId → LecId is lost

+

=

)(
n

1i

iF

SWEN304/SWEN439 week9_Tut: Normalization

22

Example 5: FDs cannot be preserved (3)

LecId StudId

777 007

101 131

101 007

999 555

99 007

333 131

222 555

222 007

StudId CourId Grade

007 M114 A+

131 C102 B+

007 C102 B

555 M114 C

007 C103 A

131 M214

555 C201 A

007 C201 A+

1. If a lecturer resigns or starts teaching another course, students’

grades are not lost

2. Information about the relationship between lecturers and

courses is stored only once

3. If a lecturer resigns, we loose only information regarding

his/her relationship with students

LecId CourId

777 M114

101 C102

999 M114

99 C103

333 M214

222 C201

444

SWEN304/SWEN439 week9_Tut: Normalization

