
It's become a core DevOps tenet: wherever possible, treat it as code.

This idea arose from Infrastructure as Code which is mentioned in The DevOps Handbook, chapter 1:

DevOps also extends and builds upon the practices of infrastructure as code, ...

the work of Operations is automated and treated like application code, so that modern
development practices can be applied to the entire development stream.

This further enabled fast deployment flow, including continuous integration, continuous delivery, and
continuous deployment.

Discuss the evolution of abstraction from physical machines to virtual machines which allowed
infrastructure to be expressed as [mostly] human-readable code. This in turn permitted the automated
configuration and maintenance of IT infrastructure.

Version control, shared version control is key.

Humble et al., Why Enterprises Must Adopt DevOps to Enable Continuous Delivery, Cutter IT Journal 24, 6
(2011).

It's fundamental.
git is not a great tool, but we're stuck with it.
GitLab provides many features to ease the use of git and to provide safeguards.

Git allows a wide variety of branching strategies and workflows. Because of this, many organisations
end up with workflows that are too complicated, not clearly defined, or not integrated with issue
tracking systems. Therefore, we propose GitLab flow as a clearly defined set of best practices. It
combines feature-driven development and feature branches with issue tracking.

Lecture Notes: Everything as Code

Origins of Everything as Code

The Evolution of Infrastructure as Code

The Place of Version Control

Version Control

GitLab Flow https://docs.gitlab.com/ee/topics/gitlab_flow.html as a solution.

DevOps aphorism: Take care of your repository and it will take care of you.

Examples:

https://github.com/angular/angular/blob/master/CONTRIBUTING.md#commit
https://manual.limesurvey.org/Standard_for_Git_commit_messages

Use:

1. GitLab push rules Settings → Repository → Push rules

2. gitlint

Must have one! The DevOps Handbook, Ch. 11, describes a fundamental tension regarding branching:

Optimise for individual productivity vs. Optimise for team productivity

The problems with the former are merge "hell" and integration "hell", where significant effort and rework is
required to integrate work on long-lived individual branches. The problems with the latter are the risk of
breaking the main branch from which the software running in production is derived.

Git Flow attempted to address the problems, but became very complicated (due in part to the lack of
structure in the design of git ; as a tool it will allow almost anything to occur). GitLab Flow
https://docs.gitlab.com/ee/topics/gitlab_flow.html seeks to address the problem with an emphasis on short-
lived feature branches. [Not mentioned in the lecture but still important: GitLab's protected branch defaults
match the GitLab Flow paradigm, where committing to main is deprecated.]

There are other problems which can be caused, often inadvertently. For example, using git rebase to
rewrite the commit history on a branch which has not been shared with others (i.e. "pushed") has many
benefits... but rewriting the commit history on a branch which others have can cause them a lot of trouble.
See: Recovering from Upstream Rebase in the [ridiculously long] git rebase manual page https://git-
scm.com/docs/git-rebase:

Rebasing (or any other form of rewriting) a branch that others have based work on is a bad idea:
anyone downstream of it is forced to manually fix their history. This section explains how to do the fix
from the downstream’s point of view. The real fix, however, would be to avoid rebasing the
upstream in the first place.

Commit Message Standards

Branching Strategy

https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://github.com/angular/angular/blob/master/CONTRIBUTING.md#commit
https://manual.limesurvey.org/Standard_for_Git_commit_messages
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://git-scm.com/docs/git-rebase#_recovering_from_upstream_rebase
https://git-scm.com/docs/git-rebase

[Note: the following was discussed in passing in the lecture] Branching and merging practices which are
standard practice in other version control systems, such as Subversion, can cause problems in git . For
example, using git merge main into a feature branch in git this will create a "Foxtrot" merge, see:
Protect our Git Repos, Stop Foxtrots Now! https://blog.developer.atlassian.com/stop-foxtrots-now/. The key
takeaway from this should be:

... always do git pull –rebase and ... never type git merge main ...

The former will also avoid "merge commits" and spurious conflicts; in git you should never be merging
main into another branch.

Linting is a form of static analysis. It checks not only language syntax but also deviations from programming
and style standards.

Shared standards — automatic enforcement for the benefit of consistency.

pre-commit https://pre-commit.com/ is a framework for automatically maintaining git pre-commit hooks
and the packages which are called from them:

We built pre-commit to solve our hook issues. It is a multi-language package manager for pre-commit
hooks. You specify a list of hooks you want and pre-commit manages the installation and execution of
any hook written in any language before every commit.

Note added: pre-commit even has a protect-first-parent hook which protects the repository from
Foxtrot merges (see: https://pre-commit.com/hooks.html).

The secret is that treating everything as code is about the DevOps culture of minimising manual toil and
collaboration through knowledge sharing.

GitOps https://about.gitlab.com/topics/gitops/

Linting

pre-commit

Conclusions

Epilogue

https://blog.developer.atlassian.com/stop-foxtrots-now/
https://pre-commit.com/
https://pre-commit.com/hooks.html
https://about.gitlab.com/topics/gitops/

