
Engineering Technology (ENGR 101)

Conditional Statements and Iterations

ENGR 101 Arduino: 99

Admin
• Lab 1 has been released

• Due date is 17 March, 19:00 (Xiamen Time)
• You must present your projects to co-teachers or tutors in the lab.
• You can either use a real Arduino or Tinkercad simulator to test your codes.

ENGR 101 Arduino: 100

if … vs if … else …

if (boolean valued expression {

}

else

statements

)

statements

{

}

ENGR 101 Arduino: 101

Using else-if statement
• Can put another if statement in the else part:

if (〈condition1 〉) {
〈actions to perform if condition1 is true〉

:
}
else if (〈condition2 〉) {
〈actions to perform if condition 2 is true (but not condition 1) 〉

:
}
else if (〈condition3 〉) {
〈actions to perform if condition 3 is true (but not conditions 1, 2)〉

:
}
else {
〈actions to perform if other conditions are false〉

:
}

ENGR 101 Arduino: 102

Example: else-if statement
int a = 5;
void setup() {

Serial.begin(9600);
if(a < 5){

Serial.println(“It is less than 5”);
}
else if(a == 5){

Serial.println(“It is equal to 5”);
}
else{

Serial.println(“It is greater than 5”);
}

}
void loop() {

}

START

Define
variable a = 5

Initialise Serial

Print “it is
equal to 5”

Print “it is
greater than 5”

loop()

Is a < 5 ? Print “it is
less than 5”

Is a == 5 ?

YES

YES
NO

NO

5

a
int

COM4
Send

It is equal to 5

ENGR 101 Arduino: 103

Boolean expressions
What can go in the condition of an if statement?
• A Boolean value – a value that is either true or false.

• Boolean expressions:
• constant values: true, false
• numeric comparisons: (x > 0) (day <= 7),

(x == y), (day != 7)

• logical operators: !, &&, || (not, and, or)
(x > 0 && x < 7)

ENGR 101 Arduino: 104

Relational Operators: < > <= >= != ==

int a = 11;
int b = 4;
void setup() {

Serial.begin(9600);
if((a != 5) && (b > 3)){

Serial.print(“Ture!");
}

}
void loop() {
}

11

a
int

4

b
int

COM4
Send

True

ENGR 101 Arduino: 105

Compound Boolean expressions: operators
Using logical operators:

Not: ! eg (! (x > 0))

And: && eg (x > 0 && x < 7 && y<10)
Evaluates each conjunct in turn.
If any conjunct false, then value of whole expression is false
If all conjuncts true, then value of whole expression is true

Or: || eg (x>0 || y<10)
Evaluates each disjunct in turn.
If any disjunct true, then value of whole expression is true
If all disjuncts false, then value of whole expression is false

Can combine into complicated expressions:
(y<10 || (x> 8 && y > 5000))

safest to use lots of (…)

ENGR 101 Arduino: 106

Traps with Boolean expressions
• When combining with && and ||, which binds tighter?

if (x > 5 && y <= z || day == 0) { ….

• Use (and) whenever you are not sure!

if ((x > 5 && y <= z) || day == 0) { …

if (x > 5 && (y <= z || day == 0)) { …

• The not operator ! goes in front of expressions:

• if (!(x > 5) && y <= z) { … NOT if ((x !> 5 && y <= z)

ENGR 101 Arduino: 107

Writing Boolean expressions
Mostly, boolean expressions are straightforward,

There are just a few traps:

• == is the "equals" operator for simple values,
= is assignment

(age == 15) vs (age = 15);
• But only use == for numbers (or characters, or references)

ENGR 101 Arduino: 108

Repetition / Iteration
Doing some action repeatedly:

• “Polish each of the cups on the shelf”

• “Put every chair on top of its desk”

• “Give a ticket to everyone who passes you”

• “Keep running around the track until 6pm”

• “Practice the music until you can play it perfectly”

Two patterns:

• Do something to each thing in a collection

• Do something until some condition changes

ENGR 101 Arduino: 109

Repetion/Iteration
Several different ways of specifying repetition.

• Counted For statement: Do something to each number from …..
for (int num = 〈start〉; num <= 〈end〉 ; num = num + 〈increment〉) {

do something with num
}

• While statement: Repeat some action while some condition is still true
while (condition-to-do-it-again) {

actions to perform each time round
}

ENGR 101 Arduino: 110

Iteration: while-loop statement
• If conditionevaluates to true:

– statement is executed
– condition is re-evaluated again

• Cycle continues until conditionevaluates to false

while (condition-to-do-it-again) {
actions to perform each time round

}

Similar structure to
the if statement

START

YES

NO

Is condition true? execute
statement

END

ENGR 101 Arduino: 111

While statement

• Meaning:
Repeatedly
• If the condition is still true, do the actions another time
• If the condition is false, stop and go on to the next statement.

• Note: don’t do actions at all if the condition is initially false

• Similar to if, but NOT THE SAME!
• keeps repeating the actions,

• as long as the condition is still true each time round
• no else — just skips to next statement when condition is false

while (condition)

action

{

}
START

YES

NO

Is condition true? execute
statement

END

ENGR 101 Arduino: 112

Iteration: while-loop statement
• If expressionevaluates to true:

– statement is executed
– expression is re-evaluated again

• Cycle continues until expression evaluates to false

while (expression)
statement

void setup() {
Serial.begin(9600);
int i = 0;
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

START

Print “^2= “

loop()

Is i < 4 ? Print the
value of i

YES

NO

Print i*i

Increment i by
1

Print “End of
loop! “

0

i
int

COM4
Send

0 2̂= 0
Define

variable i = 0

Initialise Serial

ENGR 101 Arduino: 113

Iteration: while-loop statement
• If expressionevaluates to true:

– statement is executed
– expression is re-evaluated again

• Cycle continues until expression evaluates to false

while (expression)
statement

void setup() {
Serial.begin(9600);
int i = 0;
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

START

Print “^2= “

loop()

Is i < 4 ? Print the
value of i

YES

NO

Print i*i

Increment i by
1

Print “End of
loop! “

1

i
int

COM4
Send

0 2̂=0
1 2̂=1

Define
variable i = 0

Initialise Serial

ENGR 101 Arduino: 114

Iteration: while-loop statement
• If expressionevaluates to true:

– statement is executed
– expression is re-evaluated again

• Cycle continues until expression evaluates to false

while (expression)
statement

void setup() {
Serial.begin(9600);
int i = 0;
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

START

Print “^2= “

loop()

Is i < 4 ? Print the
value of i

YES

NO

Print i*i

Increment i by
1

Print “End of
loop! “

2

i
int

COM4
Send

0 2̂=0
1 2̂=1
2 2̂=4

Define
variable i = 0

Initialise Serial

ENGR 101 Arduino: 115

Iteration: while-loop statement
• If expressionevaluates to true:

– statement is executed
– expression is re-evaluated again

• Cycle continues until expression evaluates to false

while (expression)
statement

void setup() {
Serial.begin(9600);
int i = 0;
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

START

Print “^2= “

loop()

Is i < 4 ? Print the
value of i

YES

NO

Print i*i

Increment i by
1

Print “End of
loop! “

3

i
int

COM4
Send

3 2̂=9

0 2̂=0
1 2̂=1
2 2̂=4

Define
variable i = 0

Initialise Serial

ENGR 101 Arduino: 116

Iteration: while-loop statement
• If expressionevaluates to true:

– statement is executed
– expression is re-evaluated again

• Cycle continues until expression evaluates to false

while (expression)
statement

void setup() {
Serial.begin(9600);
int i = 0;
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

START

Print “^2= “

loop()

Is i < 4 ? Print the
value of i

YES

NO

Print i*i

Increment i by
1

Print “End of
loop! “

4

i
int

COM4
Send

End of loop!
3 2̂=9

0 2̂=0
1 2̂=1
2 2̂=4

Define
variable i = 0

Initialise Serial

ENGR 101 Arduino: 117

Iteration: while-loop statement
• while conditionevaluates to true:

– statement is executed
– condition is re-evaluated again

• Cycle continues until conditionevaluates to false

while (condition-to-do-it-again) {
actions to perform each time round

}

Similar structure to
the if statement

START

YES

NO

Is condition true? execute
statement

END

ENGR 101 Arduino: 118

While-loop statement
• Print a table of numbers and their squares:

void setup(){
int num = 1;

while (num < 4) {
Serial.println((num*num));

num = num + 1;
}

}
• Repetition with while generally involves

• initialisation: get ready for the loop Put before while loop
• test: whether to repeat
• body: what to repeat
• “increment”: get ready for the next iteration Put at end of actions.

Initialise

Body

Test

Increment

ENGR 101 Arduino: 119

Iteration: for-loop statement
• The expressions are optional
• expr1 and expr3 are usually assignments
• expr2 is usually a relational expression

–If expr2 is missing, it is taken as permanently true

for (expr1; expr2; expr3){
statement

}

expr1;
while (expr2) {

statement
expr3;

}
void setup() {

Serial.begin(9600);
for (int i = 0; i < 4; i++){

Serial.print(i);
Serial.print("^2= ");
Serial.println(i * i);

}
Serial.println (“End of loop!");

}
void loop() {
}

ENGR 101 Arduino: 120

Numeric For statement
For statement.

Most commonly used to step through a sequence of numbers

Four components
• a variable and its initial value.
• a condition when to keep going / stop
• how to increment the variable each time
• actions to perform for each time

// print each number from 1 to 100:
for (int num =1 ; num <= 100 ; num = num + 1) {

Serial.println(num);
}

num:

ENGR 101 Arduino: 121

For statement

for (int num = 0 ; num < 1000 ; num++) {
Serial.println(num);

}

• Meaning:
• initialise the variable
• repeat, as long as the condition is true:

• do the actions
• do the increment

for ()

action statements

{

}

type var ; condition ; increment statement= expr

shorthand for num = num + 1

ENGR 101 Arduino: 122

Iteration: for-loop statement
for (expr1; expr2; expr3){

statement
}

expr1;
while (expr2) {

statement
expr3;

}

void setup() {
Serial.begin(9600);
for (int i = 0; i < 4; i++){

Serial.print(i);
Serial.print("^2= ");
Serial.println(i * i);

}
Serial.println (“End of loop!");

}
void loop() {
}

void setup() {
int i = 0;
Serial.begin(9600);
while (i < 4) {

Serial.print(i);
Serial.print("^2= ");
Serial.println(i*i);
i++; // or i = i + 1

}
Serial.println (“End of loop!");

}
void loop() {
}

ENGR 101 Arduino: 123

Repetion/Iteration
Several different ways of specifying repetition.

• Counted For statement: Do something to each number from …..
for (int num = 〈start〉; num <= 〈end〉 ; num = num + 〈increment〉) {

do something with num
}

• While statement: Repeat some action while some condition is still true
while (condition-to-do-it-again) {

actions to perform each time round
}

	Engineering Technology (ENGR 101)��Conditional Statements and Iterations
	Admin
	if … vs if … else …
	Using else-if statement
	Example: else-if statement
	Boolean expressions	
	Relational Operators: < > <= >= != ==
	Compound Boolean expressions: operators	
	Traps with Boolean expressions
	Writing Boolean expressions
	Repetition / Iteration
	Repetion/Iteration
	Iteration: while-loop statement
	While statement
	Iteration: while-loop statement
	Iteration: while-loop statement
	Iteration: while-loop statement
	Iteration: while-loop statement
	Iteration: while-loop statement
	Iteration: while-loop statement
	While-loop statement
	Iteration: for-loop statement
	Numeric For statement
	For statement
	Iteration: for-loop statement
	Repetion/Iteration

