Family Name:	Other Names:
Student ID:	Signature

ENGR 101: Exam

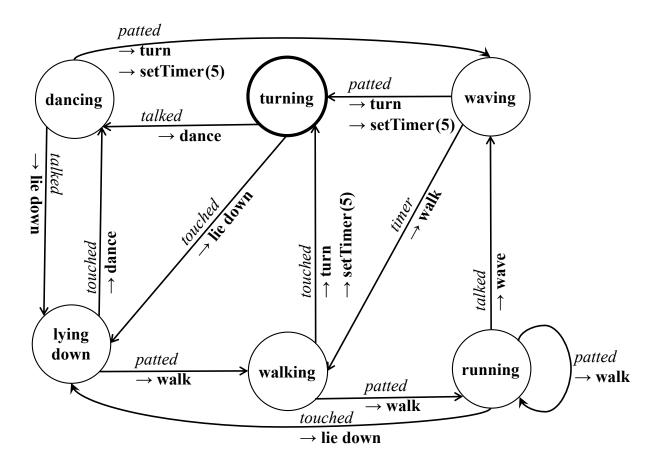
2023, June 12 ** WITH SOLUTIONS **

Instructions

- Time allowed: TWO HOURS
- Attempt all the questions. There are 70 marks in total.
- Brief Documentation is at the end of the examination script
- Write your answers in this exam paper and hand in all sheets.
- If you think some question is unclear, ask for clarification.
- You may use unmarked paper Chinese-English translation dictionaries.
- You may write notes and working on this paper, but make sure your answers are clear.

Qι	iestions	Marks	
1.	Finite State machines (FSM)	[28]	
2.	Arduino programming	[20]	
3.	Wiring up an Arduino	[12]	
4.	FSM and Arduino	[10]	
		TOTAL:	

Student ID:								
Student ID.	 	 		 				


SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Question 1. FSM controllers

[28 marks]

The diagram below shows a FSM controller robotic toy. You have seen this FSM controller in the lab.

It has the following sensors and actions:

Sensors	Actions
patted	\rightarrow walk
touched	\rightarrow dance
talked	\rightarrow wave
timer	\rightarrow lie down
	\rightarrow turn
	\rightarrow setTimer(5)

(a) **[6 marks]** If the controller starts in the state **turning** and gets this sequence of sensor values, what sequence of **states** will the controller go through?

Sensor sequence: talked, patted, timer, patted, touched, touched

State: dancing, waving, walking running, lying down, dancing

Student 1	$\mathbf{D} \cdot$										

(Question 1 continued)

(b) **[12 marks]** If the controller starts in the state **walking** and gets this sequence of sensor values, what sequence of **actions** will the controller do, and what state will it end in?

Sensor sequence: patted, talked, patted, talked, talked, touched, patted

Actions: walk, wave, trun, setTimer(5), dance, lie down, dance, trun, setTimer(5)

Final State: waving

(c) **[10 marks]** Suppose the machine is in the state **running**. Give two different sequences of sensors that would make the machine go to the state **dancing**.

Sequence 1: talked, patted, talked

Sequence 2: touched, touched

Student ID:	_					_		_	_	_		 	_				
Diddelli 1D.	•	 •	•	•	 •	•	•	•	•		•	 	•	•	•	•	•

Question 2. C programming

[20 marks]

(a) [8 marks] What will be the output of the following Arduino sketch?

```
void setup(){
    Serial .begin(9600);
    int num = 8;
    for (int i = 1; i <= num; i++) {
        if (i % 3 == 0) {
            Serial . print ("Hop");
        } else {
            Serial . print (i);
        }
    }
    void loop(){
}</pre>
```

```
12Hop45Hop78
```

(b) [4 marks] Write an Arduino sketch to divide the numbers in variables num1 and num2 and display the result on the Serial Monitor?

```
double num1 = 2.5;
double num2 = 6.0;
void setup(){

        Serial . begin(9600);
        double ans = num1 / num2;
        Serial . println (ans);

}
void loop(){
}
```

Student ID:

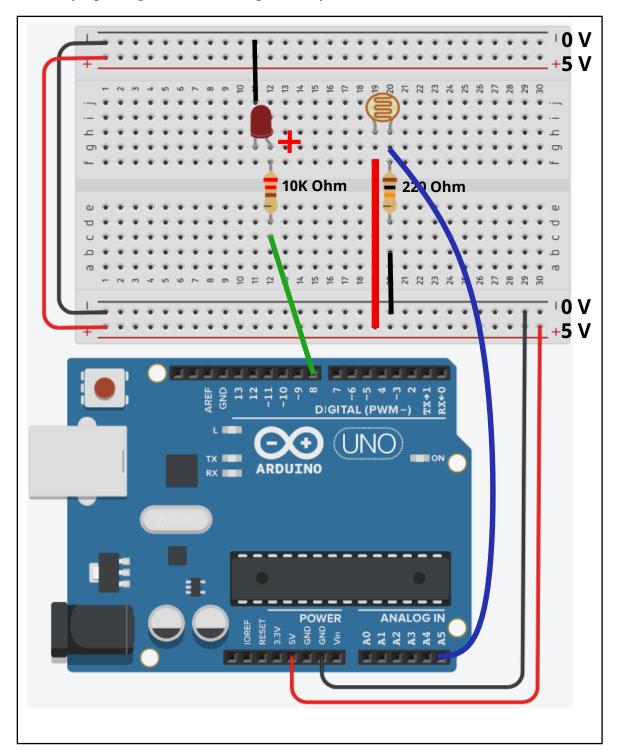
(Question 2 continued)

(c) [8 marks] Write an Arduino sketch to display all the numbers in the given array on the Serial Monitor? You must use a loop (for or while).

```
const int length = 12;
int arr[length] = { -4, 0, 2, 3, 7, 12, 8, 9, -10, 3, 1, 23 };
void setup() {
    Serial .begin(9600);

int i = 0;
while (i < length) {
    Serial . println (arr[i]);
    i++;
    }
    // OR

for (int i = 0; i < length; i++) {
    Serial . println (arr[i]);
    }
}
void loop(){
}</pre>
```


Question 3. Programming and Wiring up an Arduino

[12 marks]

A photoresistor can be connected to an Arduino pin to turn an LED on or off.

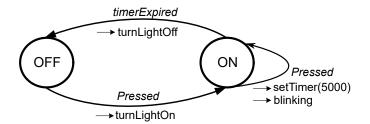
(a) **[5 marks]** Use the provided components in the picture below to draw a circuit for an Arduino project that uses a photoresistor as an input and an LED as an output.

The circuit should turn on the LED when Pin 8 is set to HIGH, and the photoresistor should send varying voltages based on the light density to Pin A5.

Student ID:

(Question 3 continued)

(b) [7 marks] Write an Arduino sketch that turns on an LED when the value reading from a photoresistor is greater than or equal to a specified threshold, and turns off the LED when the value reading is less than the threshold.


Note: The photoresistor is connected to analog pin A5 and the LED is connected to digital pin 8. The threshold value is set to 500.

```
// define photoresistor pin
const int lightPin = A5;
const int ledPin = 8;
                                     // define LED pin
                                    // Set darkness threshold
const int threshold = 500;
void setup(){
    // Set up the pins
    pinMode(ledPin, OUTPUT); // LED pin as output
pinMode(lightPin, INPUT); // photoresistor pin as input
void loop(){
    // Read the pin and perform actions
    int val = analogRead(lightPin); // Read light value
    // Turn LED on if light value is below threshold
    if ( val >= threshold ) {
        digitalWrite (ledPin, HIGH);
    } else {
        digitalWrite (ledPin, LOW);
```

Question 4. FSM and Arduino

[10 marks]

Consider the following event-driven Finite State Machine controller for a simple Arduino device.

The Arduino device has two states and three transitions

- The device sends the signal Pressed and timerExpired to the controller.
- The controller can perform four different actions on the device: turnLightOn(), turn-LightOff(), blinking(), and setTimer(n) where n is milliseconds.

Part of the code for the controller is on the facing page:

- The state variable contains the current state of the device.
- The pressed() function returns HIGH if a user pushes the button,
- The checkTimer() function checks if a timer has expired. If the timer has expired, it sets timerExpired variable to True.

Student ID:

(Question 4 continued)

```
String state = "OFF"; // Stores the current state of the FSM
bool timerExpired = false;
void setup(){
    pinMode(Light, OUTPUT); // Set pin as an output
void loop(){
   checkTimer();
    int pressed = pressed(); // returns HIGH if the user has pushed the button
    // actions and transitions
    if ( state ==
                    "OFF"
                                      ){
        if ( pressed == HIGH
                                      ){
           turnLightOn();
            state = "ON";
        }
    } else if(state ==
                            "ON"
                                             ){
        if( pressed == HIGH
                                       ){
           setTimer(5000);
            blinking ();
            state = "ON";
                   timerExpired == True
       }else if (
                                             ){
            turnLightOff();
            state = "OFF";
        }
    }
    if(timerExpired = true){ // Reset the timer
        timerExpired = false;
    }
/** Check if timer expired */
void checkTimer() {
    if ( millis () - timerStart > timerEnd) {
       timerEnd = 0;
       timerExpired = true; // tell the controller that the timer ran out.
    }
```

* * * * * * * * * * * * * * *

Student ID:								
-------------	--	--	--	--	--	--	--	--

Documentation

Brief, simplified specifications of some relevant Arduino functions.

```
Serial
Serial . begin(speed)
                                      // opens serial port, sets data rate to speed bps
Serial . print (anything val)
                                     // Prints val with no newline
Serial . println (anything val)
                                     // Prints val and newline
Serial . println ()
                                      // Prints a newline
Digital I/O
void pinMode(int pin, int mode)
                                      // Configures the specified pin as INPUT or OUTPUT
void digitalWrite (int pin, int value) // Write a HIGH or a LOW value to a digital pin.
int digitalRead(int pin)
                                      // read HIGH or LOW from the input pin
Analog I/O
int analogRead(int pin)
                                        // Reads the value from the specified analog pin.
                                        // The return value is between 0 and 1023.
void analogWrite(int pin, int value)
                                        // Writes an analog value (PWM wave) to a pin.
Time
void delay(unsigned long ms)
                                         // Pauses the program for the amount of time (in milliseconds)
void delayMicroseconds(unsigned int us) // Pauses the program for the amount of time (in microseconds)
Random Numbers
long random(long min, long max)
                                        // The random function generates pseudo-random numbers.
void randomSeed(unsigned long)
                                        // Initializes the pseudo-random number generator
```

Student ID:																							
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.