
ENGR (XMUT) 101 

Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington



27/04/2024 XMUT 101 : Engineering Technology 2

Week 9 Lecture 1a  

• Main topics (Weeks 9-15)

– Introduction to Engineering Technology

– Number systems

– Logic Gates

– Boolean Algebra
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ENGR 101 – Engineering Technology

• Engineering

– Profession in which knowledge of math and natural 

sciences, gained by study, experience, and practice, is 

applied with judgement to develop ways to use, 

economically, the materials and forces of nature for the 

benefit of humankind.

• Technology

– Application of scientific knowledge for practical 

purposes, especially in industry

– Comprised of the products and processes created by 

engineers to meet our needs and wants
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ENGR 101 – Engineering Technology

• Science

– Investigation, understanding, and discovery of nature, 

its composition, and its behaviour (ie laws of nature)

• Engineering

– Manipulating the forces of nature to advance 

humanity

– Successful engineering design improves quality of life 

while working within technical, economic, business, 

societal, and ethical constraints

▪ Technology

▪ Outcome of Engineering
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History of Engineering Technology

• Ancient Era:
– Great Wall of China, Pyramids of Egypt, etc.

• Middle Era
– Invention and use of gears

• Renaissance Era
– Industrial revolution

• Modern Day
– Computers and networks, etc.
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History of Engineering Technology

• Great wall of China

• Pyramids of Egypt

• Mayan step pyramids 
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Five Traditional Engineering Branches

• Civil
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Five Traditional Engineering Branches

• Civil

• Mechanical

• Mining and Metallurgical

• Chemical

• Electrical
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History of Engineering Technology

• Examples of engineering fields in 2024
– Computer engineering

– Electronics and communications engineering

– Electrical engineering

– Mechanical engineering

– Information Technology engineering

– Civil Engineering

– Chemical Engineering

– Aeronautical Engineering

– Agricultural engineering

– Mining engineering

– Biochemical engineering

– Electrical and Instrumentation Engineering

– Metallurgical Engineering

And others …… https://typesofengineeringdegrees.org/

https://typesofengineeringdegrees.org/
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Technology Changes Rapidly
• Hardware

– Vacuum tubes: Electron emitting devices 

– Transistors: On-off switches controlled by electricity

– Integrated Circuits( IC/ Chips): Combines thousands of 

transistors

– Very Large-Scale Integration( VLSI): Combines millions of 

transistors

– Nanotechonology → Nanoelectronics 

– What next?

• Software

– Machine language: Zeros and ones

– Assembly language: Mnemonics

– High-Level Languages: English-like

– Artificial Intelligence languages: Functions & logic predicates

– Object-Oriented Programming: Objects & operations on objects
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Technology Advances Rapidly

• Processor

• Computer Memory

• Disk
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Technology Advances Rapidly

• Processor

– Logic capacity:   ~ 30% / yr

– Clock rate:          ~ 20% / yr

• Memory

– DRAM capacity:   ~ 60% / yr 

– Memory speed:    ~ 10% / yr

– Cost per bit:    ~ 25% / yr

• Disk

– Capacity:   ~ 60% / yr
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Moore’s Law

– The logic density of silicon has approximately 
doubled every year since the invention of the silicon 
chip. This means the amount of information that can be 
stored on a chip of the same size doubles every year.

– Another formulation is that the speed of new 
computers doubles every year and a half 
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Moore’s Law
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Virtuous Circle

A result of Moore’s law:

Advances in 

technology

Competition

New

applications

Low prices &

better products

New market

& companies
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Laws of Software

• Andrew Tannenbaum:

“Software is a gas. It expands to fill the 

container holding it”

• Niklaus Wirth:

– “Software gets slower faster than hardware 

gets faster”   



Program Performance

• Performance in the 1970’s:

– Minimize memory space to make programs fast

1969 

Apollo guidance computer 

read-only rope memory

1970

First IBM computer to use

Semiconductor memory

https://www.computerhistory.org/timeline/memory-storage/



31

Program Performance

• Performance in the 1970’s:

– Minimize memory space to make programs fast

• Performance now (2022):

– Performance depend on efficient algorithms, 

compilers, & computer hardware

• Memory in hierarchical structure (Cache, RAM, permanent 

storage)

• Parallel processors

• Programmers need to more knowledge of computer 

organization
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Program Performance

Component Effect on performance Where is this 
covered

Algorithm Determines number of 
source code statements & 

I/O operations

COMP 103

Programming 
language, Compilers, 

& Architecture

Determine number of 
machine instructions

COMP 102, 
NWEN 241

Processor & memory Determine how fast 
instructions can execute

NWEN 241

I/O system (HW & OS) Determines how fast I/O 
operations may be 

executed

ENGR 101
NWEN 241
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Computer Software (apps)

• Several software layers are organized in 

hierarchical fashion

– In complex applications there could be multiple layers 

of application software

Eg. Smartphone or Laptop

Eg. Android or MS Windows 10

Eg. Wechat or MS Word
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Language Evolution

• Machine language

• Assembly language

• High-level languages

• Subroutine libraries

• There is a large gap between what is 

convenient for computers & what is convenient 

for humans

• Translation/Interpretation is needed between 

humans and machines.



35

Language Evolution

High-level

Language

Program

(in C)

swap(int v[ ], int k)

{ int temp;

     temp = v[k];

     v[k] = v[k+1];

     v[k+1] = temp;

}



Language Evolution

High-level

language

program

(in C)

swap(int v[ ], int k)

{ int temp;

     temp = v[k];

     v[k] = v[k+1];

     v[k+1] = temp;

}

Compiler

Assembly

language

program

(for MIPS)

Swap:

 nul1 $2, $5, 4

 add $2, $4, $2

 lw    $15, 0($2)

 lw    $16, 4($2)

 sw   $16, 0($2)

 sw   $15, 4($2)

 jr     $31

Compiler
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Language Evolution
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Computer Components

Operating system

2 1

3

4 5
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Memory Categories

• Volatile memory

– Loses information when power is 

switched-off

– Random Access Memory (RAM)

• Non-volatile memory

– Keeps information when power is 

switched-off

– Optical & magnetic disks

– Magnetic tape
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Volatile Memory Types

• Cache:

– Fast but expensive

– Smaller capacity

– Placed closer to the 

processor
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Volatile Memory Types

• Cache:

– Fast but expensive

– Smaller capacity

– Placed closer to the 

processor

• Main memory

– Less expensive

– More capacity

– Slower

CPU Cach

e

mem

ory

Memory slots Power socke Keyboard

socket

Interface slots: 

Display Card 

Sound Card 

Modem Card
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Non-volatile Memory Types

• Secondary 

memory

– Low cost

– Very slow

– Unlimited capacity

• Types

– Diskettes

– CD-ROMS

– Hard disk

– Flash Drives / SSD

– Who knows what 

comes next??
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Input-Output (I/O)

• I/O devices have the hardest organization

– Wide range of speeds

• Graphics vs. keyboard

– Wide range of requirements

• Speed

• Standard

• Cost . . . 

– Least amount of research done in this 

area



What is Computer Architecture?

Like a building architect, whose place at the engineering/arts and 

goals/means interfaces is seen in this diagram, a computer architect 

reconciles many conflicting or competing demands. 

Architect Interface 

Interface 

Goals 

Means 

Arts Engineering 

Client’s taste:  

mood, style, . . . 

Client’s requirements: 

function, cost, . . . 

The world of arts: 

aesthetics, trends, . . . 

Construction technology: 

material, codes, . . . 



Computer Architecture

A system concept integrating software, hardware, and firmware to 

specify the design of computing systems

° Co-ordination of levels of abstraction

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

° Under a  set of rapidly  changing Forces

Instruction Set
 Architecture (ISA)



Forces on Computer Architecture

Computer

Architecture

Technology
Programming
Languages

Operating

Systems

History

Applications



Computer Price/Performance Pyramid

Embedded 
Personal 

Workstation 

Server 

Mainframe 

Super  $Millions 
$100s Ks 

$10s Ks 

$1000s  

$100s  

$10s  

Differences in scale, 

not in substance



Automotive Embedded Computers

Embedded computers are ubiquitous, yet invisible. They are found in 

automobiles, home appliances, and many other places. 

Engine 

Impact sensors 

Navigation & 
entertainment  

Central 
controller 

Brakes 
Airbags 



Personal Computers and Workstations

Notebooks, a common class of portable computers, are much 

smaller than desktops but offer substantially the same 

capabilities. 

Smart phone Tablet

Notebook

Desktop or

workstation



Digital Computer Subsystems

The six main units of a digital computer are the CPU, which 

comprised of the control unit and the datapath, memory, the I/O 

devices which are linked together by a simple bus or a more 

elaborate network.

Memory 

Link Input/Output 

To/from network 

Processor 

Control 

Datapath 

Input  

Output 

CPU I/O 



Generations of Progress

The 5 generations of digital computers.

Generation 

(Year)

Processor 

technology

Memory 

innovations

I/O devices 

introduced

Dominant 

look & feel

0   (1600s) (Electro-) 

mechanical

Wheel, card Lever, dial, 

punched card

Factory 

equipment
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(Year)
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Generations of Progress

The 5 generations of digital computers, and their ancestors. 

Generation 

(Year)

Processor 

technology

Memory 

innovations

I/O devices 

introduced

Dominant 

look & feel
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mechanical
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chip

Disk, keyboard, 
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Desk-size 

mini

4   (1980s) LSI/VLSI SRAM/DRAM Network, CD, 

mouse,sound

Desktop/ 

laptop micro

LSI – Large Scale Integration { 500 – 20,000 transistors/chip}

VLSI – Very Large Scale Integration { 20,000 – 1,000,000,000 transistors/chip



Generations of Progress

The 5 generations of digital computers, and their ancestors. 

Generation 

(Year)

Processor 

technology

Memory 

innovations

I/O devices 

introduced

Dominant 

look & feel
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mechanical

Wheel, card Lever, dial, 

punched card

Factory 

equipment
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mini

4   (1980s) LSI/VLSI SRAM/DRAM Network, CD, 

mouse,sound

Desktop/ 

laptop micro

5   (1990s) ULSI/GSI/ 

WSI, SOC

SDRAM, 

flash

Sensor/actuator, 

point/click

Invisible, 

embedded



IC Production and Yield

15-30 
cm 

30-60 cm 

Silicon  
crystal 
ingot  

Slicer 

Processing: 
20-30 steps 

Blank wafer 
with defects 

x  x   
  x   x   x 
x        x 

      x     x 
    x   x 

0.2 cm 

Patterned wafer 

(100s of simple or scores 
of complex processors) 

Dicer 
Die 

~1 cm 

Good 
die 

~1 cm 

Die 
tester 

Microchip 
or other part 

Mounting 

Part 
tester 

Usable 
part  

to ship 

The manufacturing process for an IC part. 
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Processor and Memory Technologies

Packaging of processor, memory, and other components. 

PC board 

Backplane 

Memory 

CPU 

Bus 

Connector 

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common 

Stacked layers 
glued together 

Interlayer connections 
deposited on the 

outside of the stack 
Die 



Processor and Memory Technologies

Packaging of processor, memory, and other components. 

PC board 

Backplane 

Memory 

CPU 

Bus 

Connector 
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Latency and bandwidth characteristics of different classes of 

communication links.

Communication Technologies
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Models and abstractions in programming.

High- vs Low-Level Programming

C
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temp=v[i] 
v[i]=v[i+1] 
v[i+1]=temp 

Swap v[i] 
and v[i+1] 

add  $2,$5,$5 
add  $2,$2,$2 
add  $2,$4,$2 
lw   $15,0($2) 
lw   $16,4($2) 
sw   $16,0($2) 
sw   $15,4($2) 
jr   $31 
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00821020 
8c620000 
8cf20004 
acf20000 
ac620004 
03e00008 

Very       
high-level 
language  
objectives 
or tasks 

High-level  
language 
statements 

Assembly  
language 
instructions, 
mnemonic 

Machine  
language 
instructions, 
binary (hex) 

One task =  
many statements 

One statement =  
several instructions  

Mostly one-to-one 

More abstract, machine-independent; 
easier to write, read, debug, or maintain 

More concrete, machine-specific, error-prone; 
harder to write, read, debug, or maintain 
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More concrete, machine-specific, error-prone; 
harder to write, read, debug, or maintain 



Concepts of Performance and Speedup

Performance = 1 / Execution time                         is simplified to

Performance = 1 / CPU execution time 



Concepts of Performance and Speedup

Performance = 1 / Execution time                         is simplified to

Performance = 1 / CPU execution time 

(Performance of M1) / (Performance of M2) = Speedup of  M1 over M2 

    =  (Execution time of M2) / (Execution time M1) 

Terminology: M1 is x times as fast as M2 (e.g., 1.5 times as fast)

  M1 is 100(x – 1)% faster than M2 (e.g., 50% faster) 



Concepts of Performance and Speedup

Performance = 1 / Execution time                         is simplified to

Performance = 1 / CPU execution time 

(Performance of M1) / (Performance of M2) = Speedup of  M1 over M2 

    =  (Execution time of M2) / (Execution time M1) 

Terminology: M1 is x times as fast as M2 (e.g., 1.5 times as fast)

  M1 is 100(x – 1)% faster than M2 (e.g., 50% faster) 

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

       = Instructions  CPI / (Clock rate) 

Instruction count, CPI, and clock rate are not completely independent, 

so improving one by a given factor may not lead to overall execution 

time improvement by the same factor. 



Elaboration on the CPU Time Formula

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

       = Instructions  Average CPI / (Clock rate) 

Instructions: Number of instructions executed, not number of 

  instructions in a program (dynamic count)



Elaboration on the CPU Time Formula

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

       = Instructions  Average CPI / (Clock rate) 

Average CPI: Is calculated based on the dynamic instruction mix

  and knowledge of how many clock cycles are needed

  to execute various instructions (or instruction classes)

Instructions: Number of instructions executed, not number of 

  instructions in our program (dynamic count)
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Week 9 Lecture 1b   

• Introduction to Engineering Technology

– Computer architecture

– Computer prices and performance pyramid

– Generational progress

– IC manufacturing process

– Computer languages, performance and speed 
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