
ENGR (XMUT) 101

Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

27/04/2024 XMUT 101 : Engineering Technology 2

Week 9 Lecture 1a

• Main topics (Weeks 9-15)

– Introduction to Engineering Technology

– Number systems

– Logic Gates

– Boolean Algebra

27/04/2024 ENGR 101 : Engineering Technology 3

ENGR 101 – Engineering Technology

• Engineering

– Profession in which knowledge of math and natural

sciences, gained by study, experience, and practice, is

applied with judgement to develop ways to use,

economically, the materials and forces of nature for the

benefit of humankind.

• Technology

– Application of scientific knowledge for practical

purposes, especially in industry

– Comprised of the products and processes created by

engineers to meet our needs and wants

27/04/2024 ENGR 101 : Engineering Technology 4

ENGR 101 – Engineering Technology

• Science

– Investigation, understanding, and discovery of nature,

its composition, and its behaviour (ie laws of nature)

• Engineering

– Manipulating the forces of nature to advance

humanity

– Successful engineering design improves quality of life

while working within technical, economic, business,

societal, and ethical constraints

▪ Technology

▪ Outcome of Engineering

What makes an Engineer?

• Curiosity about how things work

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

• Affinity for using math and science

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

• Some affinity for using math and science

• Good teamwork and communication skills

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

• Some affinity for using math and science

• Good teamwork and communication skills

• Creative and adaptable

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

• Some affinity for using math and science

• Good teamwork and communication skills

• Creative and adaptable

• Eager to keep learning new things

What makes an Engineer?

• Curiosity about how things work

• Desire to solve interesting problems

• Interest in design and experimentation

• Some affinity for using math and science

• Good teamwork and communication skills

• Creative and adaptable

• Eager to keep learning new things

27/04/2024 ENGR 101 : Engineering Technology 13

History of Engineering Technology

• Ancient Era:
– Great Wall of China, Pyramids of Egypt, etc.

• Middle Era
– Invention and use of gears

• Renaissance Era
– Industrial revolution

• Modern Day
– Computers and networks, etc.

27/04/2024 ENGR 101 : Engineering Technology 14

History of Engineering Technology

• Great Wall of China

27/04/2024 ENGR 101 : Engineering Technology 15

History of Engineering Technology

• Great Wall of China

• Pyramids of Egypt

27/04/2024 ENGR 101 : Engineering Technology 16

History of Engineering Technology

• Great wall of China

• Pyramids of Egypt

• Mayan step pyramids

27/04/2024 ENGR 101 : Engineering Technology 17

Five Traditional Engineering Branches

• Civil

27/04/2024 ENGR 101 : Engineering Technology 18

Five Traditional Engineering Branches

• Civil

• Mechanical

27/04/2024 ENGR 101 : Engineering Technology 19

Five Traditional Engineering Branches

• Civil

• Mechanical

• Mining and Metallurgical

27/04/2024 ENGR 101 : Engineering Technology 20

Five Traditional Engineering Branches

• Civil

• Mechanical

• Mining and Metallurgical

• Chemical

27/04/2024 21

Five Traditional Engineering Branches

• Civil

• Mechanical

• Mining and Metallurgical

• Chemical

• Electrical

27/04/2024 ENGR 101 : Engineering Technology 22

History of Engineering Technology

• Examples of engineering fields in 2024
– Computer engineering

– Electronics and communications engineering

– Electrical engineering

– Mechanical engineering

– Information Technology engineering

– Civil Engineering

– Chemical Engineering

– Aeronautical Engineering

– Agricultural engineering

– Mining engineering

– Biochemical engineering

– Electrical and Instrumentation Engineering

– Metallurgical Engineering

And others …… https://typesofengineeringdegrees.org/

https://typesofengineeringdegrees.org/

23

Technology Changes Rapidly
• Hardware

– Vacuum tubes: Electron emitting devices

– Transistors: On-off switches controlled by electricity

– Integrated Circuits(IC/ Chips): Combines thousands of

transistors

– Very Large-Scale Integration(VLSI): Combines millions of

transistors

– Nanotechonology → Nanoelectronics

– What next?

• Software

– Machine language: Zeros and ones

– Assembly language: Mnemonics

– High-Level Languages: English-like

– Artificial Intelligence languages: Functions & logic predicates

– Object-Oriented Programming: Objects & operations on objects

24

Technology Advances Rapidly

• Processor

• Computer Memory

• Disk

25

Technology Advances Rapidly

• Processor

– Logic capacity:  ~ 30% / yr

– Clock rate:  ~ 20% / yr

• Memory

– DRAM capacity:  ~ 60% / yr

– Memory speed:  ~ 10% / yr

– Cost per bit:  ~ 25% / yr

• Disk

– Capacity:  ~ 60% / yr

26

Moore’s Law

– The logic density of silicon has approximately
doubled every year since the invention of the silicon
chip. This means the amount of information that can be
stored on a chip of the same size doubles every year.

– Another formulation is that the speed of new
computers doubles every year and a half

27

Moore’s Law

28

Virtuous Circle

A result of Moore’s law:

Advances in

technology

Competition

New

applications

Low prices &

better products

New market

& companies

29

Laws of Software

• Andrew Tannenbaum:

“Software is a gas. It expands to fill the

container holding it”

• Niklaus Wirth:

– “Software gets slower faster than hardware

gets faster”

Program Performance

• Performance in the 1970’s:

– Minimize memory space to make programs fast

1969

Apollo guidance computer

read-only rope memory

1970

First IBM computer to use

Semiconductor memory

https://www.computerhistory.org/timeline/memory-storage/

31

Program Performance

• Performance in the 1970’s:

– Minimize memory space to make programs fast

• Performance now (2022):

– Performance depend on efficient algorithms,

compilers, & computer hardware

• Memory in hierarchical structure (Cache, RAM, permanent

storage)

• Parallel processors

• Programmers need to more knowledge of computer

organization

32

Program Performance

Component Effect on performance Where is this
covered

Algorithm Determines number of
source code statements &

I/O operations

COMP 103

Programming
language, Compilers,

& Architecture

Determine number of
machine instructions

COMP 102,
NWEN 241

Processor & memory Determine how fast
instructions can execute

NWEN 241

I/O system (HW & OS) Determines how fast I/O
operations may be

executed

ENGR 101
NWEN 241

33

Computer Software (apps)

• Several software layers are organized in

hierarchical fashion

– In complex applications there could be multiple layers

of application software

Eg. Smartphone or Laptop

Eg. Android or MS Windows 10

Eg. Wechat or MS Word

34

Language Evolution

• Machine language

• Assembly language

• High-level languages

• Subroutine libraries

• There is a large gap between what is

convenient for computers & what is convenient

for humans

• Translation/Interpretation is needed between

humans and machines.

35

Language Evolution

High-level

Language

Program

(in C)

swap(int v[], int k)

{ int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

Language Evolution

High-level

language

program

(in C)

swap(int v[], int k)

{ int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

Compiler

Assembly

language

program

(for MIPS)

Swap:

 nul1 $2, $5, 4

 add $2, $4, $2

 lw $15, 0($2)

 lw $16, 4($2)

 sw $16, 0($2)

 sw $15, 4($2)

 jr $31

Compiler

37

Language Evolution

38

Computer Components

Operating system

2 1

3

4 5

39

Memory Categories

• Volatile memory

– Loses information when power is

switched-off

– Random Access Memory (RAM)

• Non-volatile memory

– Keeps information when power is

switched-off

– Optical & magnetic disks

– Magnetic tape

40

Volatile Memory Types

• Cache:

– Fast but expensive

– Smaller capacity

– Placed closer to the

processor

41

Volatile Memory Types

• Cache:

– Fast but expensive

– Smaller capacity

– Placed closer to the

processor

• Main memory

– Less expensive

– More capacity

– Slower

CPU Cach

e

mem

ory

Memory slots Power socke Keyboard

socket

Interface slots:

Display Card

Sound Card

Modem Card

42

Non-volatile Memory Types

• Secondary

memory

– Low cost

– Very slow

– Unlimited capacity

• Types

– Diskettes

– CD-ROMS

– Hard disk

– Flash Drives / SSD

– Who knows what

comes next??

43

Input-Output (I/O)

• I/O devices have the hardest organization

– Wide range of speeds

• Graphics vs. keyboard

– Wide range of requirements

• Speed

• Standard

• Cost . . .

– Least amount of research done in this

area

What is Computer Architecture?

Like a building architect, whose place at the engineering/arts and

goals/means interfaces is seen in this diagram, a computer architect

reconciles many conflicting or competing demands.

Architect Interface

Interface

Goals

Means

Arts Engineering

Client’s taste:

mood, style, . . .

Client’s requirements:

function, cost, . . .

The world of arts:

aesthetics, trends, . . .

Construction technology:

material, codes, . . .

Computer Architecture

A system concept integrating software, hardware, and firmware to

specify the design of computing systems

° Co-ordination of levels of abstraction

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

° Under a set of rapidly changing Forces

Instruction Set
 Architecture (ISA)

Forces on Computer Architecture

Computer

Architecture

Technology
Programming
Languages

Operating

Systems

History

Applications

Computer Price/Performance Pyramid

Embedded
Personal

Workstation

Server

Mainframe

Super $Millions
$100s Ks

$10s Ks

$1000s

$100s

$10s

Differences in scale,

not in substance

Automotive Embedded Computers

Embedded computers are ubiquitous, yet invisible. They are found in

automobiles, home appliances, and many other places.

Engine

Impact sensors

Navigation &
entertainment

Central
controller

Brakes
Airbags

Personal Computers and Workstations

Notebooks, a common class of portable computers, are much

smaller than desktops but offer substantially the same

capabilities.

Smart phone Tablet

Notebook

Desktop or

workstation

Digital Computer Subsystems

The six main units of a digital computer are the CPU, which

comprised of the control unit and the datapath, memory, the I/O

devices which are linked together by a simple bus or a more

elaborate network.

Memory

Link Input/Output

To/from network

Processor

Control

Datapath

Input

Output

CPU I/O

Generations of Progress

The 5 generations of digital computers.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

Generations of Progress

The 5 generations of digital computers, and their ancestors.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

1 (1950s) Vacuum tube Magnetic

drum

Paper tape,

magnetic tape

Hall-size

cabinet

Generations of Progress

The 5 generations of digital computers, and their ancestors.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

1 (1950s) Vacuum tube Magnetic

drum

Paper tape,

magnetic tape

Hall-size

cabinet

2 (1960s) Transistor Magnetic

core

Drum, printer,

text terminal

Room-size

mainframe

Generations of Progress

The 5 generations of digital computers, and their ancestors.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

1 (1950s) Vacuum tube Magnetic

drum

Paper tape,

magnetic tape

Hall-size

cabinet

2 (1960s) Transistor Magnetic

core

Drum, printer,

text terminal

Room-size

mainframe

3 (1970s) SSI/MSI RAM/ROM

chip

Disk, keyboard,

video monitor

Desk-size

mini

SSI – Small Scale Integration { logic gates: AND. OR, NAND, NOR; 1-10 / chip}

MSI – Medium Scale Integration { Flip-flops, adders/counters, MUX & DEMUX

Generations of Progress

The 5 generations of digital computers, and their ancestors.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

1 (1950s) Vacuum tube Magnetic

drum

Paper tape,

magnetic tape

Hall-size

cabinet

2 (1960s) Transistor Magnetic

core

Drum, printer,

text terminal

Room-size

mainframe

3 (1970s) SSI/MSI RAM/ROM

chip

Disk, keyboard,

video monitor

Desk-size

mini

4 (1980s) LSI/VLSI SRAM/DRAM Network, CD,

mouse,sound

Desktop/

laptop micro

LSI – Large Scale Integration { 500 – 20,000 transistors/chip}

VLSI – Very Large Scale Integration { 20,000 – 1,000,000,000 transistors/chip

Generations of Progress

The 5 generations of digital computers, and their ancestors.

Generation

(Year)

Processor

technology

Memory

innovations

I/O devices

introduced

Dominant

look & feel

0 (1600s) (Electro-)

mechanical

Wheel, card Lever, dial,

punched card

Factory

equipment

1 (1950s) Vacuum tube Magnetic

drum

Paper tape,

magnetic tape

Hall-size

cabinet

2 (1960s) Transistor Magnetic

core

Drum, printer,

text terminal

Room-size

mainframe

3 (1970s) SSI/MSI RAM/ROM

chip

Disk, keyboard,

video monitor

Desk-size

mini

4 (1980s) LSI/VLSI SRAM/DRAM Network, CD,

mouse,sound

Desktop/

laptop micro

5 (1990s) ULSI/GSI/

WSI, SOC

SDRAM,

flash

Sensor/actuator,

point/click

Invisible,

embedded

IC Production and Yield

15-30
cm

30-60 cm

Silicon
crystal
ingot

Slicer

Processing:
20-30 steps

Blank wafer
with defects

x x
 x x x
x x

 x x
 x x

0.2 cm

Patterned wafer

(100s of simple or scores
of complex processors)

Dicer
Die

~1 cm

Good
die

~1 cm

Die
tester

Microchip
or other part

Mounting

Part
tester

Usable
part

to ship

The manufacturing process for an IC part.

The manufacturing process for an IC part.

IC Production and Yield

15-30
cm

30-60 cm

Silicon
crystal
ingot

Slicer

Processing:
20-30 steps

Blank wafer
with defects

x x
 x x x
x x

 x x
 x x

0.2 cm

Patterned wafer

(100s of simple or scores
of complex processors)

Dicer
Die

~1 cm

Good
die

~1 cm

Die
tester

Microchip
or other part

Mounting

Part
tester

Usable
part

to ship

Processor and Memory Technologies

Packaging of processor, memory, and other components.

PC board

Backplane

Memory

CPU

Bus

Connector

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common

Stacked layers
glued together

Interlayer connections
deposited on the

outside of the stack
Die

Processor and Memory Technologies

Packaging of processor, memory, and other components.

PC board

Backplane

Memory

CPU

Bus

Connector

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common

Stacked layers
glued together

Interlayer connections
deposited on the

outside of the stack
Die

Latency and bandwidth characteristics of different classes of

communication links.

Communication Technologies

 3

 6

 9

12

−9 −6 −3 3

B
a

n
d

w
id

th
 (

b
/s

)

Latency (s)

10

10

10

10

10 10 10 1 10

Processor

bus

I/O

network

 System-area

 network
 (SAN)

Local-area
network
(LAN)

Metro-area
network
(MAN)

 Wide-area
 network
 (WAN)

Geographically distributed

Same geographic location

 (ns) (s) (ms) (min) (h)

Latency and bandwidth characteristics of different classes of

communication links.

Communication Technologies

 3

 6

 9

12

−9 −6 −3 3

B
a

n
d

w
id

th
 (

b
/s

)

Latency (s)

10

10

10

10

10 10 10 1 10

Processor

bus

I/O

network

 System-area

 network
 (SAN)

Local-area
network
(LAN)

Metro-area
network
(MAN)

 Wide-area
 network
 (WAN)

Geographically distributed

Same geographic location

 (ns) (s) (ms) (min) (h)

Latency and bandwidth characteristics of different classes of

communication links.

Communication Technologies

 3

 6

 9

12

−9 −6 −3 3

B
a

n
d

w
id

th
 (

b
/s

)

Latency (s)

10

10

10

10

10 10 10 1 10

Processor

bus

I/O

network

 System-area

 network
 (SAN)

Local-area
network
(LAN)

Metro-area
network
(MAN)

 Wide-area
 network
 (WAN)

Geographically distributed

Same geographic location

 (ns) (s) (ms) (min) (h)

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Models and abstractions in programming.

High- vs Low-Level Programming

C
o

m
p

ile
r

A
s
s
e

m
b

le
r

In
te

rp
re

te
r

temp=v[i]
v[i]=v[i+1]
v[i+1]=temp

Swap v[i]
and v[i+1]

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Very
high-level
language
objectives
or tasks

High-level
language
statements

Assembly
language
instructions,
mnemonic

Machine
language
instructions,
binary (hex)

One task =
many statements

One statement =
several instructions

Mostly one-to-one

More abstract, machine-independent;
easier to write, read, debug, or maintain

More concrete, machine-specific, error-prone;
harder to write, read, debug, or maintain

Concepts of Performance and Speedup

Performance = 1 / Execution time is simplified to

Performance = 1 / CPU execution time

Concepts of Performance and Speedup

Performance = 1 / Execution time is simplified to

Performance = 1 / CPU execution time

(Performance of M1) / (Performance of M2) = Speedup of M1 over M2

 = (Execution time of M2) / (Execution time M1)

Terminology: M1 is x times as fast as M2 (e.g., 1.5 times as fast)

 M1 is 100(x – 1)% faster than M2 (e.g., 50% faster)

Concepts of Performance and Speedup

Performance = 1 / Execution time is simplified to

Performance = 1 / CPU execution time

(Performance of M1) / (Performance of M2) = Speedup of M1 over M2

 = (Execution time of M2) / (Execution time M1)

Terminology: M1 is x times as fast as M2 (e.g., 1.5 times as fast)

 M1 is 100(x – 1)% faster than M2 (e.g., 50% faster)

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

 = Instructions  CPI / (Clock rate)

Instruction count, CPI, and clock rate are not completely independent,

so improving one by a given factor may not lead to overall execution

time improvement by the same factor.

Elaboration on the CPU Time Formula

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

 = Instructions  Average CPI / (Clock rate)

Instructions: Number of instructions executed, not number of

 instructions in a program (dynamic count)

Elaboration on the CPU Time Formula

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

 = Instructions  Average CPI / (Clock rate)

Average CPI: Is calculated based on the dynamic instruction mix

 and knowledge of how many clock cycles are needed

 to execute various instructions (or instruction classes)

Instructions: Number of instructions executed, not number of

 instructions in our program (dynamic count)

27/04/2024 XMUT 101 : Engineering Technology 75

Week 9 Lecture 1b

• Introduction to Engineering Technology

– Computer architecture

– Computer prices and performance pyramid

– Generational progress

– IC manufacturing process

– Computer languages, performance and speed

	Slide 1: ENGR (XMUT) 101 Engineering Technology
	Slide 2: Week 9 Lecture 1a
	Slide 3: ENGR 101 – Engineering Technology
	Slide 4: ENGR 101 – Engineering Technology
	Slide 5: What makes an Engineer?
	Slide 6: What makes an Engineer?
	Slide 7: What makes an Engineer?
	Slide 8: What makes an Engineer?
	Slide 9: What makes an Engineer?
	Slide 10: What makes an Engineer?
	Slide 11: What makes an Engineer?
	Slide 12: What makes an Engineer?
	Slide 13: History of Engineering Technology
	Slide 14: History of Engineering Technology
	Slide 15: History of Engineering Technology
	Slide 16: History of Engineering Technology
	Slide 17: Five Traditional Engineering Branches
	Slide 18: Five Traditional Engineering Branches
	Slide 19: Five Traditional Engineering Branches
	Slide 20: Five Traditional Engineering Branches
	Slide 21: Five Traditional Engineering Branches
	Slide 22: History of Engineering Technology
	Slide 23: Technology Changes Rapidly
	Slide 24: Technology Advances Rapidly
	Slide 25: Technology Advances Rapidly
	Slide 26: Moore’s Law
	Slide 27: Moore’s Law
	Slide 28: Virtuous Circle
	Slide 29: Laws of Software
	Slide 30: Program Performance
	Slide 31: Program Performance
	Slide 32: Program Performance
	Slide 33: Computer Software (apps)
	Slide 34: Language Evolution
	Slide 35: Language Evolution
	Slide 36: Language Evolution
	Slide 37: Language Evolution
	Slide 38: Computer Components
	Slide 39: Memory Categories
	Slide 40: Volatile Memory Types
	Slide 41: Volatile Memory Types
	Slide 42: Non-volatile Memory Types
	Slide 43: Input-Output (I/O)
	Slide 44: What is Computer Architecture?
	Slide 45: Computer Architecture A system concept integrating software, hardware, and firmware to specify the design of computing systems
	Slide 46: Forces on Computer Architecture
	Slide 47: Computer Price/Performance Pyramid
	Slide 48: Automotive Embedded Computers
	Slide 49: Personal Computers and Workstations
	Slide 50: Digital Computer Subsystems
	Slide 51: Generations of Progress
	Slide 52: Generations of Progress
	Slide 53: Generations of Progress
	Slide 54: Generations of Progress
	Slide 55: Generations of Progress
	Slide 56: Generations of Progress
	Slide 57: IC Production and Yield
	Slide 58: IC Production and Yield
	Slide 59: Processor and Memory Technologies
	Slide 60: Processor and Memory Technologies
	Slide 61: Communication Technologies
	Slide 62: Communication Technologies
	Slide 63: Communication Technologies
	Slide 64: High- vs Low-Level Programming
	Slide 65: High- vs Low-Level Programming
	Slide 66: High- vs Low-Level Programming
	Slide 67: High- vs Low-Level Programming
	Slide 68: High- vs Low-Level Programming
	Slide 69: High- vs Low-Level Programming
	Slide 70: Concepts of Performance and Speedup
	Slide 71: Concepts of Performance and Speedup
	Slide 72: Concepts of Performance and Speedup
	Slide 73: Elaboration on the CPU Time Formula
	Slide 74: Elaboration on the CPU Time Formula
	Slide 75: Week 9 Lecture 1b

