ENGR (XMUT) 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

CAPITAL CITY UNIVERSITY

Week 10 Lecture 1

- Main topics
 - Number system part 2
 - Conversion between binary to decimal; octal to decimal and hexadecimal to decimal

a) Binary number	1	0	0	1
b) Base 2	2 ³	2 ²	2 ¹	2 ⁰
c) Decimal equivalent	8	4	2	1
a) x b)	1 x 8 = 8	0 x 4 = 0	0 x 2 = 0	1 x 1 = 1

$$(1001)_2 = (8 + 0 + 0 + 1)_{10} = (9)_{10}$$

Convert binary number 1001 to decimal

Exercise 4.1

Convert the following binary numbers to decimal:

- a) $(1 \ 0 \ 1 \ 1)_2$
- b) (101010)₂
- c) (1 1 1 1 0 1)₂
- d) (1 1 0 0 0 1 0)₂

5 minutes to convert these 4 binary numbers to decimal!!

Exercise 4.1

Convert the following binary numbers to decimal:

- a) $(1 \ 0 \ 1 \ 1)_2 = (11)_{10}$
- b) $(1 \ 0 \ 1 \ 0 \ 1 \ 0)_2 = (42)_{10}$
- c) $(1 \ 1 \ 1 \ 1 \ 0 \ 1)_2 = (61)_{10}$
- d) $(1\ 1\ 0\ 0\ 0\ 1\ 0)_2 = (98)_{10}$

1) First convert the binary number to decimal

2) Convert the decimal number to octal

 $(1 \ 0 \ 0 \ 1)_2 = (1x8) + (0x4) + (0x2) + (1x1) = (9)_{10}$

$$(1 \ 0 \ 0 \ 1)_2 = (1x8) + (0x4) + (0x2) + (1x1) = (9)_{10}$$

2) Convert (9)₁₀ to octal: (9)₁₀ \rightarrow 9/8 = 1 remainder 1 (9)₁₀ \rightarrow (11)₈

Exercise 4.2

Convert the following binary numbers to octal:

- a) $(1 \ 0 \ 1 \ 1)_2$
- b) $(1 \ 0 \ 1 \ 0 \ 1 \ 0)_2$
- c) (1 1 1 1 0 1)₂
- d) (1 1 0 0 0 1 0)₂

5 minutes to convert these 4 binary numbers to octal numbers!!

Exercise 4.2

Convert the following binary numbers to octal:

- a) $(1 \ 0 \ 1 \ 1)_2 = (13)_8$
- b) $(1 \ 0 \ 1 \ 0 \ 1 \ 0)_2 = (52)_8$
- c) $(1 \ 1 \ 1 \ 1 \ 0 \ 1)_2 = (75)_8$
- d) $(1\ 1\ 0\ 0\ 0\ 1\ 0)_2 = (142)_8$

1) First convert the **binary number** to decimal

2) Convert the decimal number to hexadecimal

 $(1 \ 0 \ 0 \ 1)_2 = (1x8) + (0x4) + (0x2) + (1x1) = (9)_{10}$

$$(1 \ 0 \ 0 \ 1)_2 = (1x8) + (0x4) + (0x2) + (1x1) = (9)_{10}$$

Convert $(9)_{10}$ to hexadecimal: 9/16 = 0 remainder 9 $(9)_{10} \rightarrow (9)_{16}$

- ° Conversion is easy!
 - Determine 4-bit value for each hex digit
- ° Note that there are $2^4 = 16$ different values of four bits
- [°] Easier to read and write in hexadecimal.
- [°] Representations are equivalent!

$$(3A9F)_{16} = (0011 \ 1010 \ 1001 \ 1111)_2$$

 \uparrow \uparrow \uparrow \uparrow \uparrow
 $3 \ A \ 9 \ F$

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right side
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

$$(3A9F)_{16} = (0011 \ 1010 \ 1001 \ 1111)_2$$

1. Convert from Base 16 to Base 2

- 2. Regroup bits into groups of three starting from right side
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

$$3A9F_{16} = (0011 \ 1010 \ 1001 \ 1111)_2$$

Start from right side

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right side
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

Week 10 Lecture 2

- Main topics
 - Number system
 - Binary Arithmetic

• Binary addition is similar to decimal addition.

• Adding 2 binary numbers:

111101+10111

Binary Subtraction

- [°] We can also perform subtraction (with borrows in place of carries).
- ° Let's subtract $(10111)_2$ from $(1001101)_2$

Binary Multiplication

 Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

How To Represent Signed Numbers?

Plus (+) and minus (-) signs are used for decimal numbers: 25 (or +25), -16, etc.

How To Represent Signed Numbers

- Plus (+) and minus (-) signs are used for decimal numbers: 25 (or +25), -16, etc.
- For computers, it is desirable to represent everything as *bits*. (Bit – Binary digit)

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.
- For computers, desirable to represent everything as *bits.*
- Three types of signed binary number representations:
 - signed magnitude
 - 1's complement
 - 2's complement

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.
- For computers, desirable to represent everything as *bits.*
- Three types of signed binary number representations:
 - signed magnitude
 - 1's complement
 - 2's complement
- In each case: left-most bit indicates the sign; positive
 (0) or negative (1).

1) Signed magnitude numbers

1) Signed magnitude numbers

Consider *signed magnitude*:

$$00001100_2 = 12_{10}$$

Sign bit Magnitude

$$10001100_2 = -12_{10}$$

Sign bit Magnitude

 One's complement of a binary number involves inverting all bits.

- One's complement of a binary number involves inverting all bits.
 - 1. 1's comp of 00110011 is 11001100
 - 2. 1's comp of 10101010 is 01010101

- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- For an n bit number N the 1's complement is (2ⁿ-1) – N.

- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- For an n bit number N the 1's complement is (2ⁿ-1) – N.
- Called diminished radix complement by Mano since 1's complement for base (radix 2).

- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- For an n bit number N the 1's complement is (2ⁿ-1) – N.
- Called diminished radix complement by Mano since 1's complement for base (radix 2).
- To find negative of 1's complement number take the 1's complement.

Sign bit

$$100001100_2 = 12_{10}$$

$$1110011_2 = -12_{10}$$

Magnitude

Sign bit Magnitude

•The one's complement representation of an n-bit binary number can represent numbers in the range of $-(2^{N-1}-1)$ to $2^{N-1}-1$

•Example: an 8-bit binary number 1000 0000 represents 128 if the system is unsigned OR -127 if the system is ones' complement because it is the negative of 0111 1111 =127

•Try it: express the following numbers using ones' complement representation:

- (-17)₁₀
- (-32)₁₀
- (-255)₁₀

• The two's complement of a binary number involves inverting all bits and adding 1.

• The two's complement of a binary number

involves inverting all bits and adding 1.

- 1. 2's comp of 00110011 is 11001101
- 2. 2's comp of 10101010 is 01010110

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 00110011 is 11001101
 - 2's comp of 10101010 is 01010110

• For a n-bit number N the 2's complement is:

 $(2^{n}-1) - N + 1$

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 00110011 is 11001101
 - 2's comp of 10101010 is 01010110
- For an n bit number N the 2's complement is $(2^{n}-1) N + 1$
- Called radix complement by Mano since 2's complement for base (radix 2).

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 00110011 is 11001101
 - 2's comp of 10101010 is 01010110
- For an n bit number N the 2's complement is (2ⁿ-1) – N + 1.
- Called radix complement by Mano since 2's complement for base (radix 2).
- To find negative of 2's complement number take the 2's complement.

$$00001100_2 = 12_{10}$$

Sign bit Magnitude

$$1110100_2 = -12_{10}$$

Sign bit Magnitude

<u>Algorithm 1</u> – Simply complement each bit and then add 1 to the result.

<u>Algorithm 1</u> – Simply complement each bit and then

add 1 to the result.

 Find the 2's complement of (01100101)₂ and of its 2's complement...

- <u>Algorithm 1</u> Simply complement each bit and then add 1 to the result.
 - Find the 2's complement of (01100101)₂ and of its 2's complement...

Add 1

+

1001

101

- <u>Algorithm 1</u> Simply complement each bit and then add 1 to the result.
 - Find the 2's complement of (01100101)₂ and of its
 2's complement...

```
N = 01100101 [N] = 10011011 

10011010 + 1 + 1 

10011011 01100 - ----- 

01100101 01
```

- <u>Algorithm 1</u> Simply complement each bit and then add 1 to the result.
 - Finding the 2's complement of (01100101)₂ and of its 2's complement...

Ν	= 01100101		[N] =	10011011	
10011010			01100100		
+	- 1	+		1	
-					
	10011011	01100101			

 <u>Algorithm 2</u> – Start with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

- <u>Algorithm 1</u> Simply complement each bit and then add 1 to the result.
 - Finding the 2's complement of (01100101)₂ and of its 2's complement...

Ν	= 011	00101	1	[N] =	10011011
10011010			01100100		
4	F	1	+		1
10011011			01100101		

 <u>Algorithm 2</u> – Start with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.