ENGR (XIMUT) 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

Week 10 Lecture 1

- Main topics
- Number system - part 2
- Conversion between binary to decimal; octal to decimal and hexadecimal to decimal

Convert an Integer from Binary to Decimal

Convert the binary number $(1001)_{2}$ to decimal number.

Convert an Integer from Binary to Decimal

Convert the binary number $(1001)_{2}$ to decimal number.

Convert an Integer from Binary to Decimal

Convert the binary number $(1001)_{2}$ to decimal number.

Highest order digit
a) Binary number \longrightarrow
b) Base 2
c) Decimal equivalent

$$
\text { a) } \mathrm{xc} \text { c) }
$$

Lowest order digit

Convert an Integer from Binary to Decimal

Convert the binary number $(1001)_{2}$ to decimal number.

a) Binary number	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$		
b) Base 2	2^{3}	2^{2}	2^{1}	2^{0}		
c) Decimal equivalent	8	4	2	1		
a) \times b)	1×8 $=8$	0×4 $=0$	0×2	$=0$		1×1
:---:						

$(1001)_{2}=(8+0+0+1)_{10}=(9)_{10}$

Convert an Integer from Binary to Decimal

Value

Convert an Integer from Binary to Decimal

Convert an Integer from Binary to Decimal

Convert an Integer from Binary to Decimal

Convert an Integer from Binary to Decimal

Exercise 4.1
Convert the following binary numbers to decimal:
a) $(1011)_{2}$
b) $(101010)_{2}$
c) $(111101)_{2}$
d) $(1100010)_{2}$

5 minutes to convert these 4 binary numbers to decimal!!

Convert an Integer from Binary to Decimal

Exercise 4.1
Convert the following binary numbers to decimal:
a) $\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)_{2}=(11)_{10}$
b) $(101010)_{2}=(42)_{10}$
c) $(1111101)_{2}=(61)_{10}$
d) $(1100010)_{2}=(98)_{10}$

Convert an Integer from Binary to Octal

1) First convert the binary number to decimal
2) Convert the decimal number to octal

Convert an Integer from Binary to Octal

1) Convert binary number 1001 to decimal
$(1001)_{2}=(1 \times 8)+(0 x 4)+(0 \times 2)+(1 \times 1)=(9)_{10}$

Convert an Integer from Binary to Octal

Most Significant Bit
Least Significant Bit

1) Convert binary number 1001 to decimal
$(1001)_{2}=(1 \times 8)+(0 \times 4)+(0 \times 2)+(1 \times 1)=(9)_{10}$
2) Convert (9) $)_{10}$ to octal: $(9)_{10} \rightarrow 9 / 8=1$ remainder 1

$$
(9)_{10} \rightarrow(11)_{8}
$$

Convert an Integer from Binary to Octal

Exercise 4.2
Convert the following binary numbers to octal:
a) $(1011)_{2}$
b) $(101010)_{2}$
c) $(111101)_{2}$
d) $(1100010)_{2}$

5 minutes to convert these 4 binary numbers to octal numbers!!

Convert an Integer from Binary to Octal

Exercise 4.2
Convert the following binary numbers to octal:
a) $\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)_{2}=(13)_{8}$
b) $(101010)_{2}=(52)_{8}$
c) $(111101)_{2}=(75)_{8}$
d) $(1100010)_{2}=(142)_{8}$

Convert an Integer from Binary to Hexadecimal

1) First convert the binary number to decimal
2) Convert the decimal number to hexadecimal

Convert an Integer from Binary to Hexadecimal

Most Significant Bit
Least Significant Bit

Convert binary number 1001 to decimal
$(1001)_{2}=(1 \times 8)+(0 x 4)+(0 \times 2)+(1 \times 1)=(9)_{10}$

Convert an Integer from Binary to Hexadecimal

Most Significant Bit
Least Significant Bit

Convert binary number 1001 to decimal
$(1001)_{2}=(1 \times 8)+(0 \times 4)+(0 \times 2)+(1 \times 1)=(9)_{10}$
Convert (9) ${ }_{10}$ to hexadecimal:
9/16 = 0 remainder 9
$(9)_{10} \rightarrow(9)_{16}$

Converting between Base 16 and Base 2

- Conversion is easy!
$>$ Determine 4-bit value for each hex digit
- Note that there are $2^{4}=16$ different values of four bits
- Easier to read and write in hexadecimal.
- Representations are equivalent!

Converting between Base 16 and Base 2

$$
\begin{aligned}
& (3 \mathrm{~A} 9)_{16}=\left(\frac{0011}{\dagger} \frac{1010}{\dagger} \frac{1001}{\dagger} \frac{1111)_{2}}{\dagger}\right. \\
& 3 \text { A } 9 \text { F }
\end{aligned}
$$

Converting Between Base 16 and Base 8

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right side
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Converting Between Base 16 and Base 8

$$
(3 A 9 F)_{16}=\left(\begin{array}{llll}
0011 & 1010 & 1001 & 1111
\end{array}\right)_{2}
$$

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right side
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Converting Between Base 16 and Base 8

$$
3 \mathrm{A9F}_{16}=(001110101001111)_{2} 1
$$

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right side
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Converting Between Base 16 and Base 8

$$
\begin{aligned}
& 3 A 9 F_{16}=\underline{0011} \underline{1010} \underline{1001} \underline{1111_{2}} \\
& 3 \text { A } 9 \text { F } \\
& \begin{array}{llllll}
011 & \frac{101}{5} & \frac{010}{2} & \frac{011}{3} & \frac{1111_{2}}{7}
\end{array}
\end{aligned}
$$

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Converting Between Base 16 and Base 8

$$
\begin{aligned}
& 3 A 9 F_{16}=\frac{0011}{3} \frac{1010}{} \frac{1001}{9} \frac{1111_{2}}{F} \\
& 35237_{8}= \\
& \frac{011}{3} \\
& \frac{101}{5} \\
& \frac{010}{2} \\
& \frac{011}{3} \\
& \frac{111_{2}}{7}
\end{aligned}
$$

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Week 10 Lecture 2

- Main topics
- Number system
- Binary Arithmetic

Binary Addition

- Binary addition is similar to decimal addition.
- Adding 2 binary numbers:

$$
111101+10111
$$

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

$$
\begin{aligned}
& \left(1 \times 2^{5}\right)+\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
& =(1 \times 32)+(1 \times 16)+(1 \times 8)+(1 \times 4)+(0 \times 2)+(1 \times 1) \\
& =32+16+8+4+0+1 \\
& =48+13 \\
& =61
\end{aligned}
$$

Check:

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Addition

- Adding 2 binary numbers: 111101 + 10111

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract $(10111)_{2}$ from $(1001101)_{2}$

Binary Multiplication

- Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

How To Represent Signed Numbers?

- Plus (+) and minus (-) signs are used for decimal numbers: 25 (or +25), -16, etc.

How To Represent Signed Numbers

- Plus (+) and minus (-) signs are used for decimal numbers: 25 (or +25), -16, etc.
- For computers, it is desirable to represent everything as bits. (Bit - Binary digit)

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16 , etc.
- For computers, desirable to represent everything as bits.
- Three types of signed binary number representations:
- signed magnitude
- 1's complement
- 2's complement

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.
- For computers, desirable to represent everything as bits.
- Three types of signed binary number representations:
- signed magnitude
- 1's complement
- 2's complement
- In each case: left-most bit indicates the sign; positive (0) or negative (1).

1) Signed magnitude numbers

Signed magnitude example:

Sign bit Magnitude

1) Signed magnitude numbers

Consider signed magnitude:

$$
\nearrow \frac{00001100_{2}}{1}=12_{10}
$$

Sign bit Magnitude

$$
\begin{aligned}
& \quad \frac{10001100_{2}}{}=-12_{10} \\
& \text { Sign bit Magnitude }
\end{aligned}
$$

2) One's Complement Representation

- One's complement of a binary number involves inverting all bits.

2) One's Complement Representation

- One's complement of a binary number involves inverting all bits.

1. 1 's comp of 00110011 is 11001100
2. 1's comp of 10101010 is 01010101

2) One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
- 1 's comp of 00110011 is 11001100
- 1 's comp of 10101010 is 01010101
- For an n bit number N the 1 's complement is $\left(2^{n}-1\right)-N$.

2) One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
- 1 's comp of 00110011 is 11001100
- 1 's comp of 10101010 is 01010101
- For an n bit number N the 1 's complement is $\left(2^{n}-1\right)-N$.
- Called diminished radix complement by Mano since 1's complement for base (radix 2).

2) One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
- 1 's comp of 00110011 is 11001100
- 1 's comp of 10101010 is 01010101
- For an n bit number N the 1 's complement is $\left(2^{n}-1\right)-N$.
- Called diminished radix complement by Mano since 1's complement for base (radix 2).
- To find negative of 1 's complement number take the 1's complement.

2) One's Complement Representation

-The one's complement representation of an n-bit binary number can represent numbers in the range of $-\left(2^{N-1}-1\right.$) to $2^{\mathrm{N}-1}-1$
-Example: an 8-bit binary number 10000000 represents 128 if the system is unsigned OR
-127 if the system is ones' complement
because it is the negative of $01111111=127$
-Try it: express the following numbers using ones' complement representation:

- $(-17)_{10}$
- $(-32)_{10}$
- $(-255)_{10}$

3) Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.

3) Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.

1. 2 's comp of 00110011 is 11001101
2. 2's comp of 10101010 is 01010110

3) Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
- 2's comp of 00110011 is 11001101
- 2's comp of 10101010 is 01010110
- For a n -bit number N the 2's complement is:

$$
\left(2^{n}-1\right)-N+1
$$

3) Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
- 2's comp of 00110011 is 11001101
- 2's comp of 10101010 is 01010110
- For an n bit number N the 2 's complement is

$$
\left(2^{n}-1\right)-N+1
$$

- Called radix complement by Mano since 2's complement for base (radix 2).

3) Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
- 2's comp of 00110011 is 11001101
- 2's comp of 10101010 is 01010110
- For an n bit number N the 2 's complement is

$$
\left(2^{n}-1\right)-N+1 .
$$

- Called radix complement by Mano since 2's complement for base (radix 2).
- To find negative of 2's complement number take the 2's complement.

Sign bit Magnitude

$$
\nearrow{ }^{11110100_{2}}=-12_{10}
$$

Sign bit Magnitude

Two's Complement Shortcuts

Algorithm 1 - Simply complement each bit and then add 1 to the result.

Two's Complement Shortcuts

Algorithm 1 - Simply complement each bit and then add 1 to the result.

- Find the 2's complement of $(01100101)_{2}$ and of its 2's complement...

Two's Complement Shortcuts

- Algorithm 1 - Simply complement each bit and then add 1 to the result.
- Find the 2's complement of $(01100101)_{2}$ and of its 2's complement...
$\mathrm{N}=01100101$
Invert all bits in N 10011010
$\begin{array}{lll}+ & 1 & \text { Add 1 }\end{array}$

10011011

Two's Complement Shortcuts

- Algorithm 1 - Simply complement each bit and then add 1 to the result.
- Find the 2's complement of $(01100101)_{2}$ and of its 2's complement...

	$=01100101$	$[\mathrm{N}]=10011011$
	10011010	01100100
	+	+ 1
	10011011	01100101

Two's Complement Shortcuts

- Algorithm 1 - Simply complement each bit and then add 1 to the result.
- Finding the 2's complement of $(01100101)_{2}$ and of its 2's complement...

$$
\begin{aligned}
& N=01100101 \quad[N]=10011011 \\
& 10011010 \quad 01100100 \\
& \begin{array}{lll}
+1
\end{array} \\
& 10011011 \quad 01100101
\end{aligned}
$$

- Algorithm 2 - Start with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

Two's Complement Shortcuts

- Algorithm 1 - Simply complement each bit and then add 1 to the result.
- Finding the 2's complement of $(01100101)_{2}$ and of its 2's complement...

$$
\begin{aligned}
& N=01100101 \quad[N]=10011011 \\
& 10011010 \quad 01100100 \\
& \begin{array}{lll}
+1
\end{array} \\
& 1001101101100101
\end{aligned}
$$

- Algorithm 2 - Start with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

$$
\begin{array}{ll}
\mathrm{N} & =01100101 \\
{[\mathrm{~N}] \quad} & =10011011
\end{array}
$$

