ENGR (XMUT) 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

CAPITAL CITY UNIVERSITY

Week 11 Lecture 1

• Main topics

– Number system – part 3

 Machines that use 2's complement arithmetic can represent integers in the range:

-2ⁿ⁻¹ <= N <= 2ⁿ⁻¹-1

where n is the number of bits available for representing N.

• Note that $2^{n-1}-1 = (011..11)_2$ and

 $-2^{n-1} = (100..00)_2$

 Machines that use 2's complement arithmetic can represent integers in the range

-2ⁿ⁻¹ <= N <= 2ⁿ⁻¹-1

where n is the number of bits available for representing N. Note that $2^{n-1}-1 = (011..11)_2$ and $-2^{n-1} = (100..00)_2$

• For 2's complement there are more negative numbers than positive.

 Machines that use 2's complement arithmetic can represent integers in the range

-2ⁿ⁻¹ <= N <= 2ⁿ⁻¹-1

where n is the number of bits available for representing N. Note that $2^{n-1}-1 = (011..11)_2$ and $-2^{n-1} = (100..00)_2$

- For 2's complement more negative numbers than positive.
- For 1's complement there are two representations for zero.

• Machines that use 2's complement arithmetic can represent integers in the range

-2ⁿ⁻¹ <= N <= 2ⁿ⁻¹-1

where n is the number of bits available for representing N. Note that $2^{n-1}-1 = (011..11)_2$ and $-2^{n-1} = (100..00)_2$

- For 2's complement more negative numbers than positive.
- For 1's complement two representations for zero.
- For a n bit number in base (radix) z there are zⁿ different unsigned values.

(0, 1, ...zⁿ⁻¹)

• Adding 1's complement numbers is easy.

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_2$ and $+(0001)_2$.

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_2$ and $+(0001)_2$.
- Let's compute $(12)_{10} + (1)_{10}$. $- (12)_{10} = +(1100)_2 = 01100_2$ in 1's comp. $- (1)_{10} = +(0001)_2 = 00001_2$ in 1's comp.

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_2$ and $+(0001)_2$.
- Let's compute $(12)_{10} + (1)_{10}$. $- (12)_{10} = +(1100)_2 = 01100_2$ in 1's comp. $- (1)_{10} = +(0001)_2 = 00001_2$ in 1's comp.

Step 1: Add binary numbers Step 2: Add carry to low-order bit +

• Subtracting 1's complement numbers is also easy.

- Subtracting 1's complement numbers is also easy.
- Let's compute $(12)_{10} (1)_{10}$.
 - $(12)_{10} = +(1100)_2 = 01100_2$ in 1's complement
 - $-(-1)_{10} = -(0001)_2 = 11110_2$ in 1's complement

- Subtracting 1's complement numbers is also easy.
- For example, subtract $+(0001)_2$ from $+(1100)_2$.
- Let's compute (12)₁₀ (1)₁₀.
 - $-(12)_{10} = +(1100)_2 = 01100_2$ in 1's comp.
 - $-(-1)_{10} = -(0001)_2 = 11110_2$ in 1's comp.

1's comp

+

1 1 0 0

Step 1: Take 1's complement of 2nd operand.

- Subtracting 1's complement numbers is also easy.
- For example, subtract $+(0001)_2$ from $+(1100)_2$.
- Let's compute (12)₁₀ (1)₁₀.
 - $-(12)_{10} = +(1100)_2 = 01100_2$ in 1's comp.
 - $-(-1)_{10} = -(0001)_2 = 11110_2$ in 1's comp.

Step 2: Add the binary numbers.

1 1

- Subtracting 1's complement numbers is also easy.
- For example, subtract $+(0001)_2$ from $+(1100)_2$.
- Let's compute (12)₁₀ (1)₁₀.
 - $(12)_{10} = +(1100)_2 = 01100_2$ in 1's comp.
 - $-(-1)_{10} = -(0001)_2 = 11110_2$ in 1's comp.

- Step 1: Take 1's complement of 2nd operand
- Step 2: Add binary numbers
- Step 3: Add carry to low order bit

• Adding 2's complement numbers is easy.

- Adding 2's complement numbers is easy.
- Let's compute $(12)_{10} + (1)_{10}$.
 - $(12)_{10} = +(1100)_2 = 01100_2$ in 2's complement

 $(1)_{10} = +(0001)_2 = 00001_2$ in 2's complement

- Adding 2's complement numbers is easy.
- Let's compute $(12)_{10} + (1)_{10}$.
 - $(12)_{10} = +(1100)_2 = 01100_2$ in 2's comp.
 - $(1)_{10} = +(0001)_2 = 00001_2$ in 2's comp.

- Follow the 3 steps for subtraction.
- Let's compute $(12)_{10} (1)_{10}$.

$$(12)_{10} = +(1100)_2 = 01100_2$$
 in 2's comp.

$$-(-1)_{10} = -(0001)_2 = 11111_2$$
 in 2's comp.

• Follow the 3 steps for subtraction.

Carry

Compute $(13)_{10} - (5)_{10}$ using the 2s complement form.

5 minutes to complete this exercise!!

• Let's compute $(13)_{10} - (5)_{10}$.

$$(13)_{10} = +(1101)_2 = (01101)_2$$

 $(-5)_{10} = -(0101)_2 = (11011)_2$

• Discarding the carry bit, the sign bit is seen to be zero, indicating a correct result. Indeed,

 $(01000)_2 = +(1000)_2 = +(8)_{10}$

Compute
$$(5)_{10} - (12)_{10}$$

5 minutes to complete this exercise!!

• Let's compute $(5)_{10} - (12)_{10}$

$$(-12)_{10} = -(1100)_2 = (10100)_2$$

(5)₁₀ = +(0101)₂ = (00101)₂

Here, there is no carry bit and the sign bit is 1. This indicates a negative result, which is what we expect.
(11001)₂ = -(7)₁₀

Binary Subtraction

- [°] We can also perform subtraction (with borrows in place of carries).
- [°] Let's subtract $(10111)_2$ from $(1001101)_2$

What is the decimal equivalent of the 2 binary numbers?

Binary Multiplication Exercise 5.1

Multiply the 2 binary numbers: $(1001)_2$ from $(111)_2$

2 minutes to complete this exercise!

Binary Multiplication Exercise

Multiply the 2 binary numbers: $(1001)_2$ from $(111)_2$

Binary Multiplication Exercise 5.1

