ENGR (XIMUT) 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

Week 11 Lecture 1

- Main topics
- Number system - part 3

Finite Number Representation

- Machines that use 2's complement arithmetic can represent integers in the range:

$$
-2^{n-1}<=N<=2^{n-1}-1
$$

where n is the number of bits available for representing N .

- Note that $2^{n-1}-1=(011 . .11)_{2}$ and

$$
-2^{n-1}=(100 . .00)_{2}
$$

Finite Number Representation

- Machines that use 2's complement arithmetic can represent integers in the range

$$
-2^{n-1}<=N<=2^{n-1}-1
$$

where n is the number of bits available for representing N. Note that $2^{n-1}-1=(011 . .11)_{2}$ and $-2^{n-1}=(100 . .00)_{2}$

- For 2's complement there are more negative numbers than positive.

Finite Number Representation

- Machines that use 2's complement arithmetic can represent integers in the range

$$
-2^{n-1}<=N<=2^{n-1}-1
$$

where n is the number of bits available for representing N . Note that $2^{n-1}-1=(011 . .11)_{2}$ and $-2^{n-1}=(100 . .00)_{2}$

- For 2's complement more negative numbers than positive.
- For 1's complement there are two representations for zero.

Finite Number Representation

- Machines that use 2's complement arithmetic can represent integers in the range

$$
-2^{n-1}<=N<=2^{n-1}-1
$$

where n is the number of bits available for representing N . Note that $2^{n-1}-1=(011 . .11)_{2}$ and $-2^{n-1}=(100 . .00)_{2}$

- For 2's complement more negative numbers than positive.
- For 1's complement two representations for zero.
- For a n bit number in base (radix) z there are z^{n} different unsigned values.

$$
\left(0,1, \ldots z^{n-1}\right)
$$

1's Complement Addition

- Adding 1's complement numbers is easy.

1's Complement Addition

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_{2}$ and $+(0001)_{2}$.

1's Complement Addition

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_{2}$ and $+(0001)_{2}$.
- Let's compute $(12)_{10}+(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 1's comp.
$-(1)_{10}=+(0001)_{2}=00001_{2}$ in 1 's comp.

1's Complement Addition

- Adding 1's complement numbers is easy.
- For example, to add $+(1100)_{2}$ and $+(0001)_{2}$.
- Let's compute (12) $)_{10}+(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 1 's comp.
$-(1)_{10}=+(0001)_{2}=00001_{2}$ in 1's comp.
Step 1: Add binary numbers

1's Complement Subtraction

- Subtracting 1's complement numbers is also easy.

1's Complement Subtraction

- Subtracting 1's complement numbers is also easy.
- Let's compute (12) $)_{10}-(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 1 's complement
$-(-1)_{10}=-(0001)_{2}=11110_{2}$ in 1 's complement

1's Complement Subtraction

- Subtracting 1's complement numbers is also easy.
- For example, subtract $+(0001)_{2}$ from $+(1100)_{2}$.
- Let's compute (12) $)_{10}-(1)_{10}$.

$$
\begin{aligned}
& -(12)_{10}=+(1100)_{2}=01100_{2} \text { in 1's comp. } \\
& -(-1)_{10}=-(0001)_{2}=11110_{2} \text { in 1's comp. }
\end{aligned}
$$

Step 1: Take 1's complement of $2^{\text {nd }}$ operand.

1's Complement Subtraction

- Subtracting 1 's complement numbers is also easy.
- For example, subtract $+(0001)_{2}$ from $+(1100)_{2}$.
- Let's compute (12) $)_{10}-(1)_{10}$.

$$
\begin{aligned}
& -(12)_{10}=+(1100)_{2}=01100_{2} \text { in } 1 \text { 's comp. } \\
& -(-1)_{10}=-(0001)_{2}=1110_{2} \text { in } 1 \text { 's comp. }
\end{aligned}
$$

0	1	1	0	0
0	0	0	0	1

Step 1: Take 1's complement of $2^{\text {nd }}$ operand.
Step 2: Add the binary numbers.

Add		$\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$
		$\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}$

1's Complement Subtraction

- Subtracting 1 's complement numbers is also easy.
- For example, subtract $+(0001)_{2}$ from $+(1100)_{2}$.
- Let's compute $(12)_{10}-(1)_{10}$.

$$
\begin{aligned}
& -(12)_{10}=+(1100)_{2}=01100_{2} \text { in } 1 \text { 's comp. } \\
& -(-1)_{10}=-(0001)_{2}=11110_{2} \text { in } 1 \text { 's comp. }
\end{aligned}
$$

Step 1: Take 1's complement of $2^{\text {nd }}$ operand

Step 2: Add binary numbers
Step 3: Add carry to low order bit

Final Result
$\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}$

2's Complement Addition

- Adding 2's complement numbers is easy.

2's Complement Addition

- Adding 2's complement numbers is easy.
- Let's compute $(12)_{10}+(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 2's complement
$-(1)_{10}=+(0001)_{2}=00001_{2}$ in 2 's complement

2's Complement Addition

- Adding 2's complement numbers is easy.
- Let's compute $(12)_{10}+(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 2's comp.
$-(1)_{10}=+(0001)_{2}=00001_{2}$ in 2's comp.

Step 1: Add binary numbers
Step 2: Ignore carry bit

2's Complement Subtraction

- Follow the 3 steps for subtraction.
- Let's compute (12) $10-(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 2's comp.
$-(-1)_{10}=-(0001)_{2}=11111_{2}$ in 2's comp.

2's Complement Subtraction

- Follow the 3 steps for subtraction.
- Let's compute (12) $)_{10}-(1)_{10}$.
$-(12)_{10}=+(1100)_{2}=01100_{2}$ in 2's comp.
$-(-1)_{10}=-(0001)_{2}=11111_{2}$ in 2's comp.

Step 1: Take 2's complement of $2^{\text {nd }}$ operand

Step 2: Add binary numbers
Step 3: Ignore carry bit

Final Result 1	0	1	0	1	1

Ignore
Carry

2's Complement Subtraction: Exercise 1

Compute (13) $)_{10}-(5)_{10}$ using the 2 s complement form.

5 minutes to complete this exercise!!

2's Complement Subtraction: Exercise 1

- Let's compute $(13)_{10}-(5)_{10}$.

$$
\begin{aligned}
& (13)_{10}=+(1101)_{2}=(01101)_{2} \\
& (-5)_{10}=-(0101)_{2}=(11011)_{2}
\end{aligned}
$$

- Adding these two 5-bit codes...

| + | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -------1 | - | - | -- | | |
| 1 | 0 | 1 | 0 | 0 | 0 |

- Discarding the carry bit, the sign bit is seen to be zero, indicating a correct result. Indeed,

$$
(01000)_{2}=+(1000)_{2}=+(8)_{10}
$$

2's Complement Subtraction: Exercise 2

Compute $(5)_{10}-(12)_{10}$

5 minutes
to complete this exercise!!

2's Complement Subtraction: Exercise 2

- Let's compute $(5)_{10}-(12)_{10}$

$$
\begin{array}{lll}
(-12)_{10} & =-(1100)_{2} & =(10100)_{2} \\
(5)_{10} & =+(0101)_{2} & =(00101)_{2}
\end{array}
$$

- Adding these two 5-bit codes...

- Here, there is no carry bit and the sign bit is 1 . This indicates a negative result, which is what we expect.
$(11001)_{2}=-(7)_{10}$

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract $(10111)_{2}$ from $(1001101)_{2}$

Binary Multiplication

What is the decimal equivalent of the 2 binary numbers?

Binary Multiplication Exercise 5.1

Multiply the 2 binary numbers:
$(1001)_{2}$ from $(111)_{2}$

2 minutes to complete this exercise!

Binary Multiplication Exercise

Multiply the 2 binary numbers:
$(1001)_{2}$ from $(111)_{2}$

Binary Multiplication Exercise 5.1

Multiply the 2 binary numbers:
$(1001)_{2}$ from $(111)_{2}$
Self check!

