XMUT 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

CAPITAL CITY UNIVERSITY

Evaluate a) for A=0, B=1, C=1, D=1 and b) A=0, B=0, C=1, D=1, E=1

- Draw a circuit diagram to implement $x=(A+B)(\overline{B}+C)$
- Draw a circuit diagram to implement $x=AC+B\overline{C}+\overline{A}BC$

 Draw a circuit diagram to implement x=AB(C+D) and determine the output for A=B=C=1 and D=0

Logic Gates Symbols

Gate	Symbol
OR	\rightarrow
AND	
NOT	
NAND	
NOR	\sum
EX-OR or X-OR	\rightarrow
EX-NOR or X-NOR	

Exclusive OR

Exclusive NOR

NOR Gates

- Combine basic OR and NOT gate.
- Not OR NOR gate is an inverted OR gate.

NOR Gates

- Combine basic OR and NOT gate.
- Not OR NOR gate is an inverted OR gate.
- An inversion "bubble" is placed at the output

of the OR gate.

(a) NOR symbol

(b) Equivalent circuit; (c) Truth table.

	OR				NOR
Α	В		A + B		$\overline{A + B}$
0	0		0		1
0	1		1		0
1	0		1		0
1	1		1		0

(c)

NAND Gates

• The NAND gate is an inverted AND gate.

NAND Gates

- The NAND gate is an inverted AND gate.
- An inversion "bubble" is placed at the output of the AND gate.

NAND Gates

NAND Truth table

Α	В	A • B	A• B
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

 Draw a circuit diagram to implement x=AB(C+D) using only NOR / NAND gates. Evaluate for A=B=C=1 and D=0

 Draw a circuit diagram to implement x=AB(C+D) using only NOR / NAND gates. Evaluate for A=B=C=1 and D=0

Boolean Algebra

- A Boolean algebra is defined as a closed algebraic system containing a set K of two or more elements and the two operators, . and +.
- Useful for identifying and *minimizing* circuit functionality
- Identity elements
 - a + 0 = a
 - a . 1 = a
- 0 is the identity element for the + operation.
 1 is the identity element for the . operation.

Boolean Algebra for OR gate

$$OR$$

 $0 + 0 = 0$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

Boolean Algebra for OR, AND

OR	AND
0 + 0 = 0	$0 \cdot 0 =$
0 + 1 = 1	$0 \cdot 1 =$
1 + 0 = 1	$1 \cdot 0 =$
1 + 1 = 1	$1 \cdot 1 =$

Boolean Algebra for OR, AND & NOT

- OR
- 0 + 0 = 0 $0 \cdot 0 = 0$
- 0 + 1 = 1 $0 \cdot 1 = 0$
- 1 + 0 = 1 $1 \cdot 0 = 0$
- 1 + 1 = 1
- $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

AND

NOT $\overline{0} = 1$ $\overline{1} = 0$

Ordering Boolean Functions

How to interpret $A \bullet B + C$? The above expression is read as: A "AND" B "OR" C

Ordering Boolean Functions

- How to interpret A•B+C?
 Is it A•B ORed with C ?
 - Is it A ANDed with B+C ?
- Order of precedence for Boolean algebra: AND before OR.
- Note that parentheses are needed here :

Commutativity and Associativity

- The Commutative Property: For every a and b,
 (1) a + b = b + a
 (2) a . b = b . a
- The Associative Property: For every a, b, and c,
 (1) a + (b + c) = (a + b) + c
 (2) a . (b . c) = (a . b) . c

Distributivity of the Operators and Complements

- The Distributive Property:
 For every a, b, and c in K,
 a + (b.c) = (a + b).(a + c)
 a.(b+c) = (a.b) + (a.c)
- The Existence of the Complement:

For every a in K there exists a unique element called a (*complement of a*) such that,

a + ā = 1 a . ā = 0

Distributivity of the Operators and Complements

- The Distributive Property:
 For every a, b, and c in K,
 a + (b.c) = (a + b).(a + c)
 a.(b+c) = (a.b) + (a.c)
- The Existence of the Complement:

For every a in K there exists a unique element called a' (*complement of a*) such that,

```
a + ā = 1
a . ā = 0
```

 To simplify notation, the . operator is frequently omitted. When two elements are written next to each other, the AND (.) operator is implied...

$$a + b \cdot c = (a + b) \cdot (a + c)$$

 $a + bc = (a + b)(a + c)$

Duality

- The principle of *duality* is often a helpful concept it is symmetry present properties and theorems.
- In Boolean algebra we form a dual expression
 - swap + for . operators, and vice versa
 - swap 1s for 0s and vice versa
- Example: the dual of a (b + c) = a b + a cis a + (bc) = (a + b)(a + c)
- We say that duality holds if both are true. (as we will soon see, both are true, so indeed, duality holds for this expression)

Involution

- This theorem states:
 a = a
- Remember that $a\bar{a} = 0$ and $a + \bar{a} = 1$.
 - Therefore, \overline{a} is the complement of a and a is also the complement of \overline{a} .
 - As the complement of \overline{a} is unique, it follows that $\overline{\overline{a}}=a$.
- Taking the double inverse of a value will give the initial value.

Absorption

• This theorem states:

a + ab = a

Absorption

- This theorem states:
 a + ab = a
 a(a+b) = a
- To prove the first half of this theorem:

 $a + ab = a \cdot 1 + ab$ = a (1 + b)= a (b + 1)= a (1)a + ab = a

DeMorgan's Theorem

• A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: $(a + b) = \overline{a} \overline{b}$ $(ab) = \overline{a} + \overline{b}$

DeMorgan's Theorem

- A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: (a + b) = a b (ab) = a + b
- Complement the expression (a(b + z(x + ā)) and simplify.

$$(\overline{a(b+z(x + \overline{a})))} = \overline{a} + \overline{(b + z(x + \overline{a}))}$$
$$= \overline{a} + \overline{b(z(x + \overline{a}))}$$
$$= \overline{a} + \overline{b(\overline{z} + (x + \overline{a}))}$$
$$= \overline{a} + \overline{b}(\overline{z} + \overline{x}\overline{a})$$
$$= \overline{a} + \overline{b}(\overline{z} + \overline{x}\overline{a})$$

DeMorgan's Theorem – Exercise

Simplify the expression:

$$\overline{\overline{(x \ \overline{y})}} (\overline{y} + z)$$

DeMorgan's Theorem – Exercise

Solution:

$$\overline{(\overline{x \ \overline{y}})} (\overline{y} + z)$$

$$\overline{(\overline{X} \cdot \overline{\overline{Y}}) \cdot (\overline{Y} + Z)}$$
$$(\overline{\overline{X} \cdot \overline{\overline{Y}}}) + (\overline{\overline{Y}} + Z)$$
$$(X \cdot \overline{\overline{Y}}) + (\overline{\overline{Y}} \cdot \overline{Z})$$
$$(X \cdot \overline{\overline{Y}}) + (Y \cdot \overline{Z})$$
$$= X\overline{\overline{Y}} + Y\overline{\overline{Z}}$$

DeMorgan: exercises

$$z = \overline{A + \overline{B} \cdot C} \qquad \qquad \omega = \overline{(A + BC) \cdot (D + EF)}$$

DeMorgan: exercises

 $z = \overline{A + \overline{B} \cdot C}$

 $= \overline{A} \cdot (\overline{\overline{B} \cdot C})$

 $=\overline{A}\cdot(\overline{\overline{B}}+\overline{C})$

 $=\overline{A}\cdot(B+\overline{C})$

$$\omega = \overline{(A + BC) \cdot (D + EF)}$$

$$= (\overline{A + BC}) + (\overline{D + EF})$$

$$= (\overline{A} \cdot \overline{BC}) + (\overline{D} \cdot \overline{EF})$$

$$= [\overline{A} \cdot (\overline{B} + \overline{C})] + [\overline{D} \cdot (\overline{E} + \overline{F})]$$

$$= \overline{AB} + \overline{AC} + \overline{DE} + \overline{DF}$$

)]

Boolean Algebra Laws

	Name of Law	Properties
1.	Identity Law	A+0=A; A+1=1; A.0=0; A.1=A
2.	Commutative Law	A.B = B.A; A+B = B+A
3.	Associative Law	A.(B.C) = A.B.C; A+(B+C) = A+B+C
4.	Idempotent Law	A.A = A; A+A = A
5.	Double Negative Law	A'' = A
6.	Complement Law	A.A' = 0; A+A' = 1
7.	Law of Union	A+1 = A; A+0 = A
8.	De Morgan's Theorem	(AB)' = A'+B'; (A+B)' = A'.B'
9.	Distributive Law	A.(B+C) = (A.B) + (A.C); A+(BC) = (A+B).(A+C)
10.	Absorption Law	A.(A+B) = A; A+(A.B) = A
11.	Common Identities Law	A.(A'+B) = AB; A+(A'B) = A+B

C + (BC)'

$$C + (BC)' \rightarrow BC$$

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

- C + (BC)' <u>Rules Used</u> Apply DeMorgan's Theorem to the (BC)' term
 - 9. DeMorgan's Theorem (AB)' = A'+B'; (A+B)' = A'.B'

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

C + (BC)' <u>Rules Used</u>

Step 1: C + (B' + C')

9) DeMorgan's Law

9.	DeMorgan's Theorem	(AB)' = A'+B';	(A+B)' = A'.B'

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

C + (BC)'

Rules Used

- Step 1: C + (B' + C')
- Step 2: C + (C' + B')
- 8) DeMorgan's Law
- 2) Commutative Law

2.	Commutative Law	A.B = B.A;	A+B = B+A	

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

- C + (BC)' <u>Rul</u>
- Step 1: C + (B' + C')
- Step 2: C + (C' + B')
- Step 3: C + C' + B'

Rules Used

- 8) De Morgan's Law
- 2) Commutative
- 3) Associative Laws

3.	Associative Law	A.(B.C) = A.B.C; A+(B+C) = A+B+C

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

- C + (BC)'
- Step 1: C + (B' + C')
- Step 2: C + (C' + B')
- Step 3: C + C' + B'
- Step 4: 1 + B'

- **Rules Used**
- 8) DeMorgan's Law
- 2) Commutative
- 3) Associative Laws
- 6) Complement Law

Simplify the expression: $C + (BC)' \rightarrow \overline{BC}$

Solution:

- C + (BC)'
- Step 1: C + (B' + C')
- Step 2: C + (C' + B')
- Step 3: C + C' + B'
- Step 4: 1 + B'
- Step 5: = 1

Rules Used

- 8) DeMorgan's Law
- 2) Commutative
- 3) Associative Laws
- 6) Complement Law
- 1) Identity Law

1. Identity Law

A+0=A; A+1=1; A.0=0; A.1=A

(AB)'(A'+B)(B'+B)

	Name of Law	Properties		
1.	Identity Law	A+0=A; A+1=1; A.0=0; A.1=A		
2.	Commutative Law	A.B = B.A; A+B = B+A		
3.	Associative Law	A.(B.C) = A.B.C; A+(B+C) = A+B+C		
4.	Idempotent Law	A.A = A; A+A = A		
5.	Double Negative Law	A'' = A		
6.	Complement Law	A.A' = 0; A+A' = 1		
7.	Law of Union	A+1 = A; A+0 = A		
8.	DeMorgan's Theorem	(AB)' = A'+B'; (A+B)' = A'.B'		
9.	Distributive Law	A.(B+C) = (A.B) + (A.C); A+(BC) = (A+B).(A+C)		
10.	Absorption Law	A.(A+B) = A; A+(A.B) = A		
11.	Common Identities Law	A.(A'+B) = AB; A+(A'B) = A+B		

Solution:

Solution:

(AB)'(A'+B)(B'+B)

Step 1: (AB)'(A'+B)(1)

Step 2: (AB)'(A'+B)

Rules Used

6) Complementary Law

1) Identity Law

A+0=A; A+1=1; A.0=0; A.1=A

1. Identity Law

(AB)'(A'+B)(B'+B)

Solution:

(AB)'(A'+B)(B'+B)

Step 1: (AB)'(A'+B)(1)

- Step 2: (AB)'(A'+B)
- Step 3: (A'+B')(A'+B)

Rules Used

6) Complementary Law

1) Identity Law

8) DeMorgan's Theorem

8. DeMorgan's Theorem

(AB)' = A'+B' (A+B)' = A'.B'

(AB)'(A'+B)(B'+B)

Solution:

(AB)'(A'+B)(B'+B)

Step 1: (AB)'(A'+B)(1)

Step 2: (AB)'(A'+B)

Step 3: (A'+B')(A'+B) Step 4: |A' + B'B

Rules Used

6) Complementary Law

1) Identity Law

8) DeMorgan's Theorem

9) Distributive Law

Distributive Law 9.

A.(B+C) = (A.B) + (A.C);A+(BC) = (A+B).(A+C)

(AB)'(A'+B)(B'+B)

Solution:

- (AB)'(A'+B)(B'+B)
- Step 1: (AB)'(A'+B)(1)
- Step 2: (AB)'(A'+B)
- Step 3: (A'+B')(A'+B)
- Step 4: A' + B'B

Step 5: = A'

6. Complement Law

Rules Used

- 6) Complementary Law
- 1) Identity Law
- 8) DeMorgan's Theorem
- 9) Distributive Law
- 6) Complement Law

A.A' = 0; A+A' = 1

Exercise

Use the Boolean rules to simplify the following expressions:

- (a) $X = A B C + \overline{A} B + A \overline{B} C$
- (b) $X = \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{C}$
- (c) $AB + \overline{A} C + BC = AB + \overline{A} C$
- (d) $(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$

Exercise 6.2

Use the Boolean rules to simplify the following expressions:

- (i) AB + AC + ABC (ii) $AB + A(\overline{B} + C) + AB\overline{C}$
- (iii) $\overline{A} BC + A\overline{B} C + ABC + AB\overline{C} + \overline{A} \overline{B} \overline{C}$
- (iv) $\overline{AB} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C}$

$x = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

$\mathbf{x} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$

Trick: copy terms (remember: X+X=X)

$$x = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$
$$= \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

$\mathbf{x} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$

Trick: 'duplicate' terms (remember: X+X=X)

$$x = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$
$$= \overline{ABC} + ABC + A\overline{BC} + A\overline{BC} + ABC + AB\overline{C} + ABC$$
$$= BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$\mathbf{x} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$

Trick: copy terms (remember: X+X=X)

$$x = \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C}$$
$$= \overline{ABC} + ABC + A\overline{BC} + ABC + AB\overline{C} + ABC$$
$$= BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$
$$= BC + AC + AB$$

DeMorgan's Theorem and NOR gates

• What does DeMorgan's theorem imply about NOR gates?

• Another symbol for the NOR function

DeMorgan's Theorem and NAND gates

• What does DeMorgan's theorem imply about NAND gates?

• Another symbol for the NAND function

Exclusive OR and Exclusive NOR Circuits

- The exclusive OR, abbreviated XOR produces a HIGH output whenever the two inputs are at opposite levels.
- The exclusive NOR, abbreviated XNOR produces a HIGH output whenever the two inputs are at the same level.
- XOR and XNOR outputs are opposite.

FIGURE 4-20 (a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c) IEEE/ANSI symbol for XOR gate.

FIGURE 4-21 (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (c) IEEE/ANSI symbol.

61

Determine the O/P waveform of the circuit below:

O/P Hi when I/P at different levels

Design a circuit so that the O/P will only be HI when the combination of two sets of two bit binary numbers are equal.

X 1	X 0	<i>y</i> 1	y 0	z (Output)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Parity

- XOR and XNOR gates are often used in parity generators and parity checkers
- (more on this in future courses!)