XMUT 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

Write the Boolean expression for the output X

Review

Evaluate a) for $A=0, B=1, C=1, D=1$ and $b) A=0, B=0, C=1, D=1, E=1$

Review

- Draw a circuit diagram to implement $x=(A+B)(\bar{B}+C)$
- Draw a circuit diagram to implement $x=A C+B \bar{C}+\bar{A} B C$

Review

- Draw a circuit diagram to implement $\mathrm{x}=\mathrm{AB}(\overline{\mathrm{C}+\mathrm{D})}$ and determine the output for $\mathrm{A}=\mathrm{B}=\mathrm{C}=1$ and $\mathrm{D}=0$

Logic Gates Symbols

Gate	Symbol
OR	
AND	
NOT	
NAND	
NOR	
$\begin{aligned} & \text { EX-OR or } \\ & \text { X-OR } \end{aligned}$	
$\begin{aligned} & \text { EX-NOR } \\ & \text { or } \\ & \text { X-NOR } \end{aligned}$	

Exclusive OR

Exclusive NOR

NOR Gates

- Combine basic OR and NOT gate.
- Not OR - NOR gate is an inverted OR gate.

NOR Gates

- Combine basic OR and NOT gate.
- Not OR - NOR gate is an inverted OR gate.
- An inversion "bubble" is placed at the output of the OR gate.

(a) NOR symbol

(b) Equivalent circuit; (c) Truth table.

(b)

	$\underbrace{\text { OR }}$		NOR
A	B	$A+B$	$A+B$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

(c)

NAND Gates

- The NAND gate is an inverted AND gate.

NAND Gates

- The NAND gate is an inverted AND gate.
- An inversion "bubble" is placed at the output of the AND gate.

NAND Gates

NAND Truth table

\mathbf{A}	\mathbf{B}	$\mathbf{A} \cdot \mathbf{B}$	$\overline{\mathbf{A} \cdot \mathbf{B}}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Review

- Draw a circuit diagram to implement $x=A B(\overline{\mathrm{C}+\mathrm{D}})$ using only NOR / NAND gates. Evaluate for $A=B=C=1$ and $D=0$

Review

- Draw a circuit diagram to implement $x=A B(\overline{\mathrm{C}+\mathrm{D})}$ using only NOR / NAND gates. Evaluate for $A=B=C=1$ and $D=0$

Boolean Algebra

- A Boolean algebra is defined as a closed algebraic system containing a set K of two or more elements and the two operators, . and +.
- Useful for identifying and minimizing circuit functionality
- Identity elements
$-\mathrm{a}+0=\mathrm{a}$
$-\mathrm{a} .1=\mathrm{a}$
- 0 is the identity element for the + operation.

1 is the identity element for the . operation.

Boolean Algebra for OR gate

$O R$
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=1$

Boolean Algebra for OR, AND

$$
\begin{array}{l|l}
O R & A N D \\
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=1 & 1 \cdot 1=1
\end{array}
$$

Boolean Algebra for OR, AND \& NOT

$$
\begin{array}{ll}
\text { OR } & \text { AND } \\
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=1 & 1 \cdot 1=1
\end{array}
$$

NOT
$\overline{0}=1$
$\overline{1}=0$

Ordering Boolean Functions

How to interpret $A \bullet B+C$?
 The above expresson is read as:
 A "AND" B "OR" C

Ordering Boolean Functions

- How to interpret $\mathrm{A} \bullet \mathrm{B}+\mathrm{C}$?
- Is it A•B ORed with C?
- Is it A ANDed with B+C?
- Order of precedence for Boolean algebra: AND before OR.
- Note that parentheses are needed here :

Commutativity and Associativity

- The Commutative Property:

For every a and b,
(1) $a+b=b+a$
(2) $a \cdot b=b \cdot a$

- The Associative Property: For every a, b, and c,
(1) $a+(b+c)=(a+b)+c$
(2) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$

Distributivity of the Operators and Complements

- The Distributive Property:

For every a, b, and c in K,

$$
\begin{aligned}
& a+(b \cdot c)=(a+b) \cdot(a+c) \\
& a \cdot(b+c)=(a \cdot b)+(a \cdot c)
\end{aligned}
$$

- The Existence of the Complement:

For every a in K there exists a unique element called $\overline{\mathrm{a}}$ (complement of a) such that,

$$
\begin{aligned}
& \mathrm{a}+\overline{\mathrm{a}}=1 \\
& \mathrm{a} \cdot \overline{\mathrm{a}}=0
\end{aligned}
$$

Distributivity of the Operators and Complements

- The Distributive Property:

For every a, b, and c in K,
$a+(b \cdot c)=(a+b) \cdot(a+c)$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$

- The Existence of the Complement:

For every a in K there exists a unique element called a' (complement of a) such that,

$$
\begin{aligned}
& a+\bar{a}=1 \\
& a \cdot \bar{a}=0
\end{aligned}
$$

- To simplify notation, the . operator is frequently omitted. When two elements are written next to each other, the AND (.) operator is implied...

$$
\begin{aligned}
& a+b \cdot c=(a+b) \cdot(a+c) \\
& a+b c=(a+b)(a+c)
\end{aligned}
$$

Duality

- The principle of duality is often a helpful concept - it is symmetry present properties and theorems.
- In Boolean algebra we form a dual expression
- swap + for . operators, and vice versa
- swap 1s for 0s and vice versa
- Example: the dual of $a(b+c)=a b+a c$ is

$$
a+(b c)=(a+b)(a+c)
$$

- We say that duality holds if both are true. (as we will soon see, both are true, so indeed, duality holds for this expression)

Involution

- This theorem states:
$\overline{\bar{a}}=\mathrm{a}$
- Remember that $a \bar{a}=0$ and $a+\bar{a}=1$.
- Therefore, \bar{a} is the complement of a and a is also the complement of $\overline{\mathrm{a}}$.
- As the complement of \bar{a} is unique, it follows that $\overline{\bar{a}}=\mathrm{a}$.
- Taking the double inverse of a value will give the initial value.

Absorption

- This theorem states:

$$
a+a b=a
$$

$$
a(a+b)=a
$$

Absorption

- This theorem states:

$$
a+a b=a
$$

$$
a(a+b)=a
$$

- To prove the first half of this theorem:

$$
\begin{aligned}
a+a b & =a \cdot 1+a b \\
& =a(1+b) \\
& =a(b+1) \\
& =a(1) \\
a+a b & =a
\end{aligned}
$$

DeMorgan's Theorem

- A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: $\overline{(a+b)}=\bar{a} \bar{b} \quad \overline{(a b)}=\bar{a}+\bar{b}$

DeMorgan's Theorem

- A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: $\overline{(\mathrm{a}+\mathrm{b})}=\overline{\mathrm{a}} \overline{\mathrm{b}} \quad \overline{(\mathrm{ab})}=\overline{\mathrm{a}}+\overline{\mathrm{b}}$
- Complement the expression $(a(b+z(x+\bar{a}))$ and simplify.

$$
\begin{aligned}
\overline{(a(b+z(x+\bar{a})))} & =\bar{a}+\overline{(b+z(x+\bar{a}))} \\
& =\bar{a}+\bar{b} \bar{b}(\overline{z(x+\bar{a}))} \\
& =\bar{a}+\bar{b}(\bar{z}+(x+a)) \\
& =\bar{a}+\bar{b}(\bar{z}+\overline{\bar{x}}) \\
& =\bar{a}+\bar{b}(\bar{z}+\bar{x} a)
\end{aligned}
$$

DeMorgan's Theorem - Exercise

Simplify the expression:

$$
\overline{(x \bar{y})}(\bar{y}+z)
$$

DeMorgan's Theorem - Exercise

Solution:
$\overline{\overline{(x \bar{y}})(\bar{y}+z)}$

$$
\begin{aligned}
& \overline{(\bar{X} \cdot \bar{Y}}) \cdot(\bar{Y}+Z) \\
& (\overline{\bar{X} \cdot \overline{\bar{Y}}})+(\overline{\bar{Y}}+Z) \\
& (X \cdot \bar{Y})+(\overline{\bar{Y}} \cdot \bar{Z}) \\
& (X \cdot \bar{Y})+(Y \cdot \bar{Z}) \\
= & X \bar{Y}+Y \bar{Z}
\end{aligned}
$$

DeMorgan: exercises

$z=\overline{A+\bar{B} \cdot C}$

$$
\omega=\overline{(A+B C) \cdot(D+E F)}
$$

DeMorgan: exercises

$$
\begin{array}{rlrl}
z= & \overline{A+\bar{B} \cdot C} & \omega & =\overline{(A+B C) \cdot(D+E F)} \\
& =\bar{A} \cdot(\overline{\bar{B} \cdot C}) & & =(\overline{A+B C})+(\overline{D+E F}) \\
& =\bar{A} \cdot(\overline{\bar{B}}+\bar{C}) & & =(\bar{A} \cdot \overline{B C})+(\bar{D} \cdot \overline{E F}) \\
& =\bar{A} \cdot(B+\bar{C}) & & =[\bar{A} \cdot(\bar{B}+\bar{C})]+[\bar{D} \cdot(\bar{E}+\bar{F})] \\
& & =\bar{A} \bar{B}+\bar{A} \bar{C}+\bar{D} \bar{E}+\bar{D} \bar{F}
\end{array}
$$

Boolean Algebra Laws

Name of Law

1. Identity Law
2. Commutative Law
3. Associative Law
4. Idempotent Law
5. Double Negative Law
6. Complement Law
7. Law of Union
8. De Morgan's Theorem
9. Distributive Law
10. Absorption Law
11. Common Identities Law

Properties

$A+0=A ; A+1=1 ; A .0=0 ; A .1=A$
$A \cdot B=B \cdot A ; A+B=B+A$
$A \cdot(B \cdot C)=A \cdot B \cdot C ; A+(B+C)=A+B+C$
$A . A=A ; A+A=A$
$A^{\prime \prime}=A$
$A . A^{\prime}=0 ; A+A^{\prime}=1$
$A+1=A ; A+0=A$
$(A B)^{\prime}=A^{\prime}+B^{\prime} ;(A+B)^{\prime}=A^{\prime} . B^{\prime}$
$A \cdot(B+C)=(A \cdot B)+(A \cdot C)$;
$A+(B C)=(A+B) \cdot(A+C)$
$A \cdot(A+B)=A ; A+(A \cdot B)=A$
$A .\left(A^{\prime}+B\right)=A B ; A+\left(A^{\prime} B\right)=A+B$

Example 1: Simplify the given Boolean expression.

$$
C+(B C)^{\prime}
$$

Example 1: Simplify the given Boolean expression.

$$
C+(B C)^{\prime} \rightarrow \widehat{B C}
$$

Example 1

Simplify the expression: $C+(B C)^{\prime} \longrightarrow \overline{B C}$

Solution:
$C+(B C)^{\prime} \quad$ Rules Used
Apply DeMorgan's Theorem to the (BC)' term
9. DeMorgan's Theorem
$(A B)^{\prime}=A^{\prime}+B^{\prime} ; \quad(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$

Example 1

Simplify the expression: $C+(B C)^{\prime} \longrightarrow \overline{B C}$

Solution:
$C+(B C)$
Rules Used
Step 1: $\quad \mathbf{C}+\left(\mathbf{B}^{\prime}+\mathrm{C}^{\prime}\right)$
9) DeMorgan's Law
9. DeMorgan's Theorem
$(A B)^{\prime}=A^{\prime}+B^{\prime} ; \quad(A+B)^{\prime}=A^{\prime} . B^{\prime}$

Example 1

Simplify the expression: $C+(B C)^{\prime} \longrightarrow \overline{B C}$

Solution:

$C+(B C)$
Rules Used
Step 1: $\quad \mathbf{C}+\left(B^{\prime}+C^{\prime}\right)$
8) DeMorgan's Law

Step 2: $\quad C+\left(C^{\prime}+B^{\prime}\right)$
2) Commutative Law
2. Commutative Law
$A \cdot B=B \cdot A ; A+B=B+A$

Example 1

Simplify the expression: $C+(B C)^{\prime} \longrightarrow \overline{B C}$

Solution:

$C+(B C)^{\prime}$
Step 1: $\quad \mathbf{C}+\left(B^{\prime}+\mathbf{C}^{\prime}\right)$
Step 2: $\quad \mathbf{C}+\left(C^{\prime}+B^{\prime}\right)$
Step 3: C + C' + B'
3) Associative Laws
3. Associative Law
$A .(B . C)=A \cdot B \cdot C ; A+(B+C)=A+B+C$

Example 1

Simplify the expression: $C+(B C)^{\prime} \longrightarrow \overline{B C}$

Solution:

$C+(B C)$
Step 1: $\quad \mathbf{C}+\left(B^{\prime}+\mathbf{C}^{\prime}\right)$
Step 2: $\quad \mathbf{C}+\left(C^{\prime}+B^{\prime}\right)$
Step 3: $\mathbf{C}+\mathrm{C}^{\prime}+\mathrm{B}^{\prime}$
Step 4: 1 + B'
6. Complementary Law

Example 1

Simplify the expression: $C+(B C)^{\prime} \rightarrow \overline{B C}$

Solution:
$C+(B C)$
Step 1: $\quad \mathbf{C}+\left(B^{\prime}+C^{\prime}\right)$
Step 2: $\quad \mathbf{C}+\left(C^{\prime}+B^{\prime}\right)$
Step 3: C + C' $+\mathbf{B}^{\prime}$
Step 4: 1 + B'
Step 5: $=1$

Rules Used

8) DeMorgan's Law
9) Commutative
10) Associative Laws
11) Complement Law
12) Identity Law

Example 2: Simplify the given Boolean expression.

$$
(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)
$$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Name of Law

1. Identity Law
2. Commutative Law
3. Associative Law
4. Idempotent Law
5. Double Negative Law
6. Complement Law
7. Law of Union
8. DeMorgan's Theorem
9. Distributive Law
10. Absorption Law
11. Common Identities Law

Properties

$A+0=A ; A+1=1 ; A .0=0 ; A .1=A$
$A \cdot B=B \cdot A ; A+B=B+A$
A. $(\mathrm{B} \cdot \mathrm{C})=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C} ; \mathrm{A}+(\mathrm{B}+\mathrm{C})=$ $A+B+C$
$A . A=A ; A+A=A$
$A^{\prime \prime}=A$
$A . A^{\prime}=0 ; A+A^{\prime}=1$
$A+1=A ; A+0=A$
$(A B)^{\prime}=A^{\prime}+B^{\prime} ;(A+B)^{\prime}=A^{\prime} . B^{\prime}$
$A \cdot(B+C)=(A \cdot B)+(A \cdot C)$;
$A+(B C)=(A+B) \cdot(A+C)$
$A \cdot(A+B)=A ; A+(A \cdot B)=A$
$A \cdot\left(A^{\prime}+B\right)=A B ; A+\left(A^{\prime} B\right)=A+B$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Solution:
$(A B)^{\prime}\left(A^{\prime}+B\right) \quad$ Rules Used
Step 1: $(A B)^{\prime}\left(A^{\prime}+B\right)(1)$ 6) Complement Law
6. Complement Law
A. $A^{\prime}=0 ; A+A^{\prime}=1$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Solution:
$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$
Step 1: $\quad(A B)^{\prime}\left(A^{\prime}+B\right)(1)$
Step 2: $(A B)\left(A^{\prime}+B\right)$

Rules Used

6) Complementary Law
7) Identity Law
1. Identity Law
$A+0=A ; A+1=1 ; A .0=0 ; A .1=A$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Solution:
$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$
Step 1: $(A B)^{\prime}\left(A^{\prime}+B\right)(1)$
Step 2: $(A B)\left(A^{\prime}+B\right)$
Step 3: $\left.A^{\prime}+B^{\prime}\right)\left(A^{\prime}+B\right)$
8) DeMorgan's Theorem
8. DeMorgan's Theorem

$$
(A B)^{\prime}=A^{\prime}+B^{\prime} \quad(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}
$$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Solution:
$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$
Step 1: $(A B)^{\prime}\left(A^{\prime}+B\right)(1)$
Step 2: (AB) ${ }^{\prime}\left(A^{\prime}+B\right)$
Step 3: $\quad\left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}+B\right)$
Step 4: $A^{\prime}+B^{\prime} B$

Rules Used

6) Complementary Law
7) Identity Law
8) DeMorgan's Theorem
9) Distributive Law
9. Distributive Law

$$
\begin{aligned}
& A \cdot(B+C)=(A \cdot B)+(A \cdot C) \\
& A+(B C)=(A+B) \cdot(A+C)
\end{aligned}
$$

Example 2: Simplify the given Boolean expression.

$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$

Solution:
$(A B)^{\prime}\left(A^{\prime}+B\right)\left(B^{\prime}+B\right)$
Step 1: $(A B)^{\prime}\left(A^{\prime}+B\right)(1)$
Step 2: (AB) ${ }^{\prime}\left(A^{\prime}+B\right)$
Step 3: $\quad\left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}+B\right)$
Step 4: $A^{\prime}+B^{\prime} B$
Step 5: $=A^{\prime}$

Rules Used

6) Complementary Law
7) Identity Law
8) DeMorgan's Theorem
9) Distributive Law
10) Complement Law
6. Complement Law
A. $A^{\prime}=0, A+A^{\prime}=1$

Exercise

Use the Boolean rules to simplify the following expressions:
(a) $\mathrm{X}=\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{B}+\mathrm{AB} \overline{\mathrm{C}}$
(b) $\mathrm{X}=\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}$
(c) $\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}$
(d) $(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}}+\mathrm{C})(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}}+\mathrm{C})$

Exercise 6.2

Use the Boolean rules to simplify the following expressions:
(i) $\mathrm{AB}+\mathrm{AC}+\mathrm{ABC}$ (ii) $\mathrm{AB}+\mathrm{A}(\overline{\mathrm{B}}+\mathrm{C})+\mathrm{AB} \overline{\mathrm{C}}$
(iii) $\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}$
(iv) $A \overline{\mathrm{~B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}$

Simplify and draw the circuit diagram for

$$
x=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

Simplify and draw the circuit diagram for

$$
\mathrm{x}=\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC}
$$

Trick: copy terms (remember: $\mathrm{X}+\mathrm{X}=\mathrm{X}$)

$$
\begin{aligned}
x & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& =\bar{A} B C+A B C+A \bar{B} C+A B C+A B \bar{C}+A B C
\end{aligned}
$$

Simplify and draw the circuit diagram for

$$
x=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

Trick: 'duplicate' terms (remember: $\mathrm{X}+\mathrm{X}=\mathrm{X}$)

$$
\begin{aligned}
x & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& =\bar{A} B C+A B C+A \bar{B} C+A B C+A B \bar{C}+A B C \\
& =B C(\bar{A}+A)+A C(\bar{B}+B)+A B(\bar{C}+C)
\end{aligned}
$$

Simplify and draw the circuit diagram for

$$
\mathrm{x}=\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC}
$$

Trick: copy terms (remember: $\mathrm{X}+\mathrm{X}=\mathrm{X}$)

$$
\begin{aligned}
x & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& =\bar{A} B C+A B C+A \bar{B} C+A B C+A B \bar{C}+A B C \\
& =B C(\bar{A}+A)+A C(\bar{B}+B)+A B(\bar{C}+C) \\
& =B C+A C+A B
\end{aligned}
$$

DeMorgan's Theorem and NOR gates

- What does DeMorgan's theorem imply about NOR gates?

- Another symbol for the NOR function

DeMorgan's Theorem and NAND gates

- What does DeMorgan's theorem imply about NAND gates?

- Another symbol for the NAND function

Exclusive OR and Exclusive NOR Circuits

- The exclusive OR, abbreviated XOR produces a HIGH output whenever the two inputs are at opposite levels.
- The exclusive NOR, abbreviated XNOR produces a HIGH output whenever the two inputs are at the same level.
- XOR and XNOR outputs are opposite.

XOR gate symbols

(b)

(c)

A	B	x
0	0	1
0	1	0
1	0	0
1	1	1

XNOR gate symbols

(b)

(c)

Determine the 0/P waveform of the circuit below:

O / P Hi when I/P at different levels

Design a circuit so that the O/P will only be HI when the combination of two sets of two bit binary numbers are equal.

x_{1}	x_{0}	y_{1}	y_{0}	z (Output)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- XOR and XNOR gates are often used in parity generators and parity checkers
- (more on this in future courses!)

