XMUT 101 Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

CAPITAL CITY UNIVERSITY

Exclusive OR and Exclusive NOR Circuits

- The exclusive OR, abbreviated XOR produces a HIGH output whenever the two inputs are at opposite levels.
- The exclusive NOR, abbreviated XNOR produces a HIGH output whenever the two inputs are at the same level.
- XOR and XNOR outputs are opposite.

FIGURE 4-20 (a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c) IEEE/ANSI symbol for XOR gate.

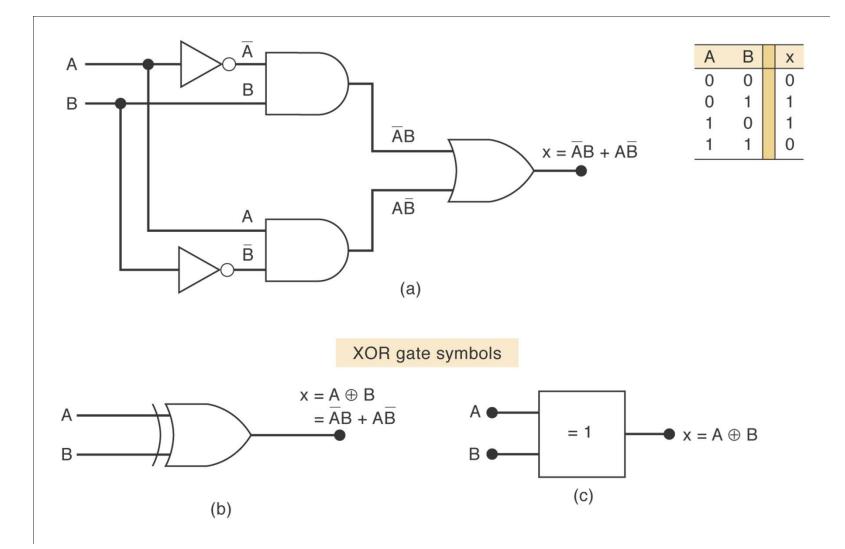
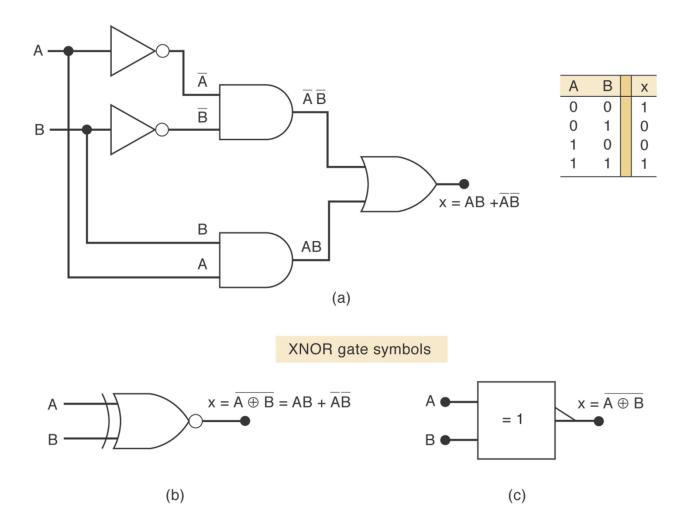
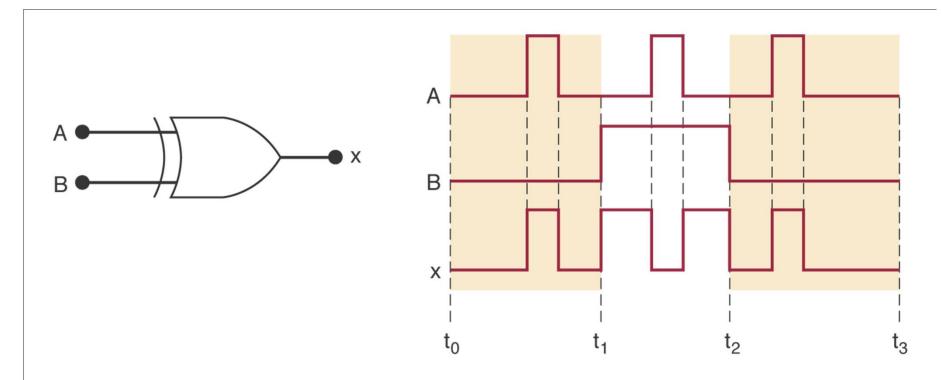


FIGURE 4-21 (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (c) IEEE/ANSI symbol.



4

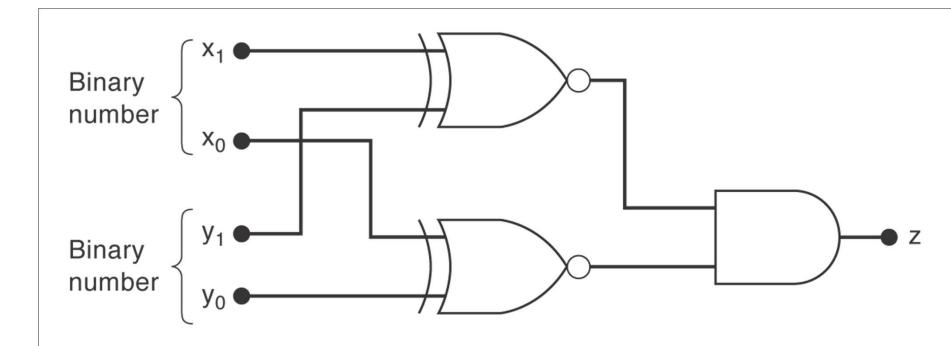
Determine the O/P waveform of the circuit below:



O/P Hi when I/P at different levels

Design a circuit so that the O/P will only be HI when the combination of two sets of two bit binary numbers are equal.

X 1	X 0	<u>У</u> 1	y 0	z (Output)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1



Parity Generator and Checker

- Parity bit: extra bit added to data to make the number of 1's even (for even parity) or odd (for odd parity)
- It is used to detect error in transmission
- Example: if we use an even parity system:
 - Data: $1 \ 1 \ 1 \ 0$ we add a parity bit 1
 - Data: $1 \ 1 \ 0 \ 0$ we add parity bit 0
 - Data: $0 \ 0 \ 0 \ 0$ we add a parity bit 0
- A Parity Checker will return a TRUE error bit if the number of 1's is odd (for even parity) and if the number of 1's is even (for odd parity)

Parity Generator

$AB \oplus AB = \overline{AB} + A\overline{B}$ $\overline{AB \oplus AB} = \overline{AB} + AB$

- How to construct an even parity generator (3 bits input)?
- Truth table:

Α	B	С	Ρ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Parity Generator $AB \oplus AB = \overline{AB} + A\overline{B}$ $\overline{AB \oplus AB} = \overline{AB} + AB$

- How to construct an even parity generator (3 bits input)?
- Truth table:

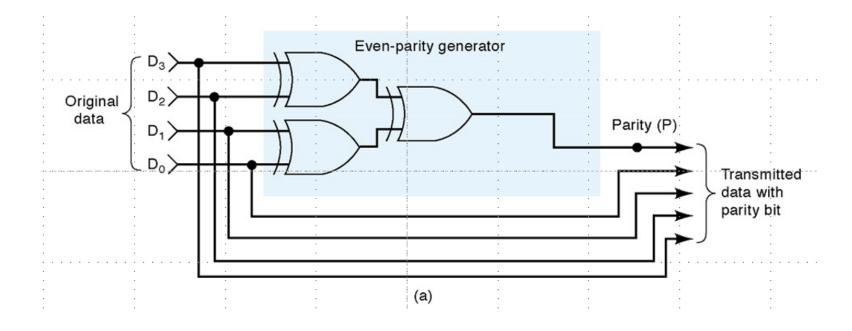
A	B	С	Ρ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$P = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

= $\overline{A}(\overline{B}C + B\overline{C}) + A(\overline{B}\overline{C} + BC)$
= $\overline{A}(BC \oplus BC) + A(\overline{B}C \oplus BC)$
= $\overline{A}X + A\overline{X}$
= $A \oplus B \oplus C$

Parity Generator and Checker

Similarly for 4 bits (even parity):



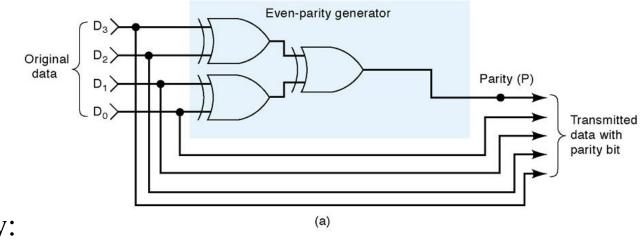
Parity Checker

- Exercise:
 - Design an even parity **checker** (2 data bits) using a truth table
 - Express it using XOR or XNOR gates

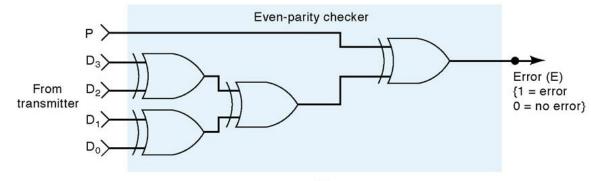
Α	B	Ρ	Е
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Parity Generator and Checker

Similarly for 4 bits:



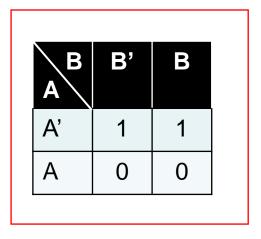
Even Parity:



Karnaugh Map (K-Map)

- An alternate approach to representing Boolean functions
- Can be used to minimize Boolean functions
- Easy conversion from truth table to K-Map to minimized SOP representation.
- Simple rules (steps) used to perform minimization
- Leads to minimized SOP representation.
 - Much faster and more efficient than previous minimization techniques with Boolean algebra.

• The truth table values are placed in the K map as shown below.

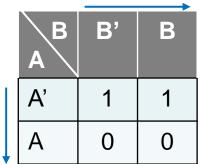


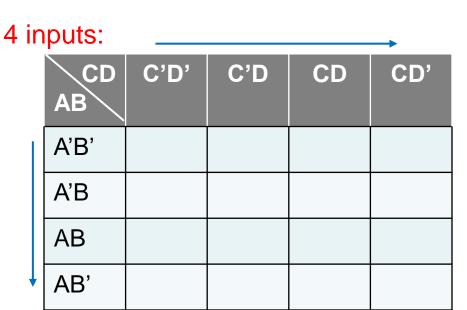
C AB	C'	С	
A'B'			
A'B			
AB			
AB'			

- The truth table values are placed in the K map.
- Adjacent K map square differ in only one variable both horizontally and vertically.

- The truth table values are placed in the K map.
- Adjacent K map square differ in only one variable both horizontally and vertically.
- The pattern from top to bottom and left to right must be in the form $\overline{AB}, \overline{AB}, AB, AB$

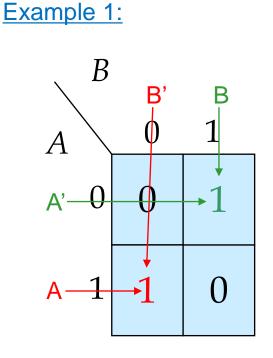
2 inputs:





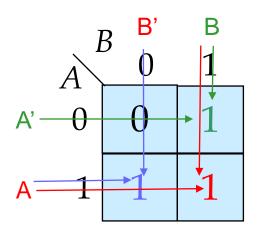
- The truth table values are placed in the K map as shown in on next slide.
- Adjacent K map square differ in only one variable both horizontally and vertically.
- The pattern from top to bottom and left to right must be in the form $\overline{AB}, \overline{AB}, AB, AB$
- A SOP expression can be obtained by OR-ing all squares that contain a 1.

- A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- Two variable maps.



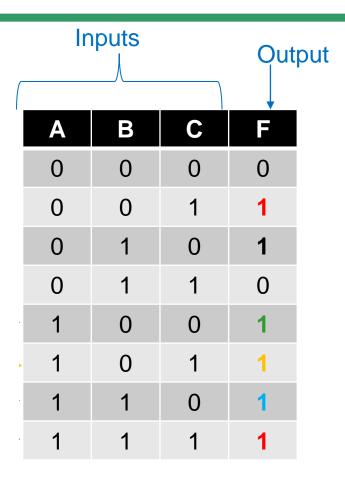
F=AB'+A'B

- A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- Two variable maps.



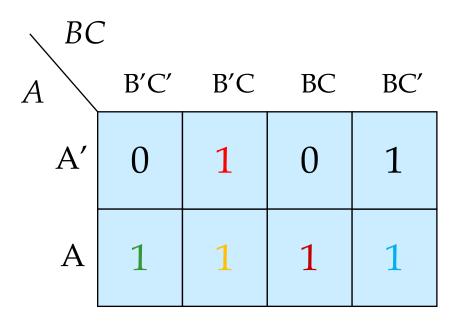
F = AB + A'B + AB'

° Three variable maps.



F = A'B'C + A'BC' + AB'C' + AB'C + ABC' + ABC

Sum of Products expression (SOP)



Α	B	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

F = A'B'C + A'BC' + AB'C' + AB'C + ABC' + ABC

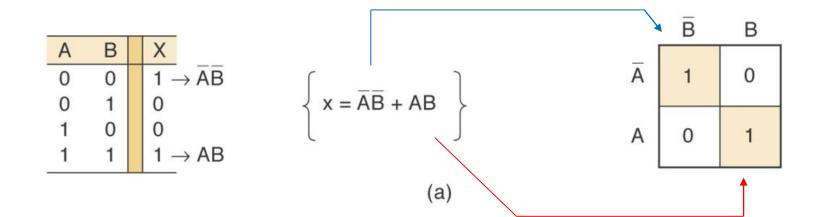
Rules for K-Maps

- We can reduce functions by circling 1's in the K-map
- Each circle represents min-term reduction
- Following circling, we can deduce minimized and-or form.

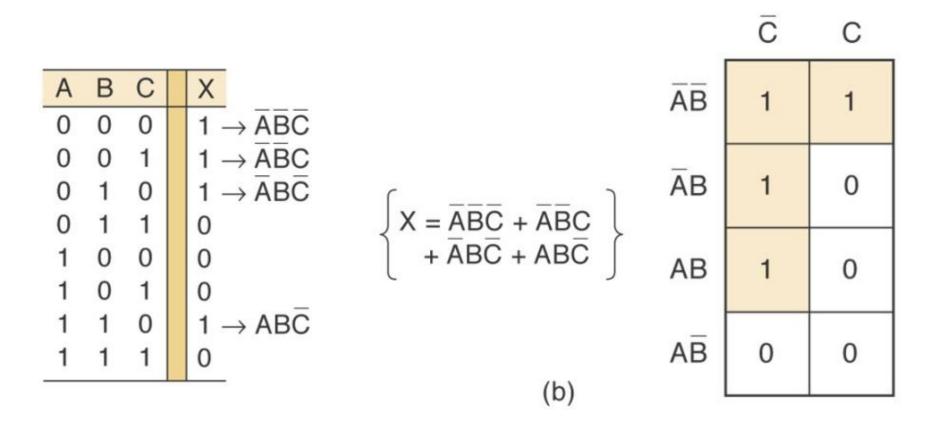
Rules to consider

- Every cell containing a 1 must be included at least once.
- The largest possible "power of 2 rectangle" must be enclosed.
- The 1's must be enclosed in the smallest possible number of rectangles.

K-Maps and truth tables for (a) two variables.



K-Maps and truth tables for (b) three variables.



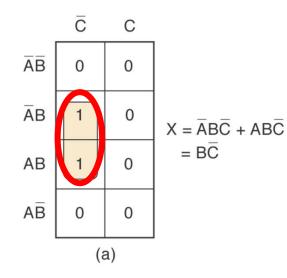
K-Maps and truth tables for (c) four variables.

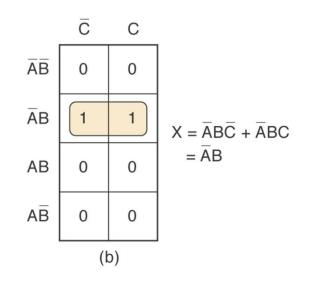
ABCD	X					
0 0 0 0	0		ĈD	ĈD	CD	ĈD
0 0 0 1	$1 \rightarrow ABCD$					
0 0 1 0	0	AB	0	1	0	0
0 0 1 1	0					
0 1 0 0		ĀΒ	0	1	0	0
0 1 0 1	$ \begin{array}{c} 1 \rightarrow \overline{A}B\overline{C}D \\ 0 \end{array} $ $ \begin{array}{c} X = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D \\ + AB\overline{C}D + ABCD \end{array} $		0		Ŭ	Ŭ
0 1 1 0	$0 + AB\overline{C}D + ABCD$					
0 1 1 1	0	AB	0	1	1	0
1 0 0 0	0					
1001	0	AB	0	0	0	0
1010	0		1922			
1011	0					
1 1 0 0	0					
1 1 0 1	$1 \rightarrow ABCD$					
1 1 1 0	0					
1 1 1 1	$1 \rightarrow ABCD$					

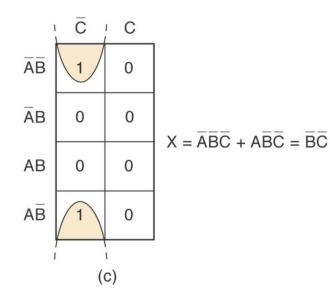
Karnaugh Map Method

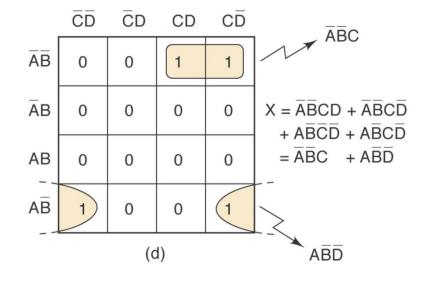
- Loop adjacent groups of 2, 4, or 8 that contain 1's will result in further simplification.
- When the largest possible groups have been looped, only the common terms are placed in the final expression.
- Looping may also be wrapped between top, bottom, and sides.

Looping pairs of adjacent 1's – One variable is eliminated.

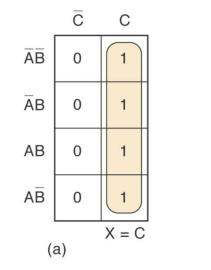


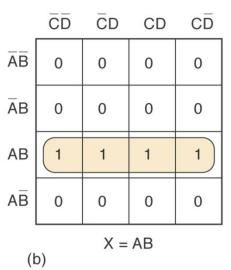


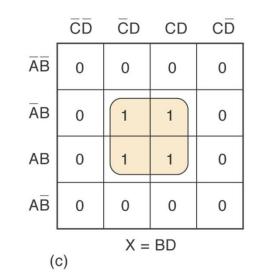




Looping groups of four adjacent 1's – Two variables are eliminated.







Complete K-Map simplification process

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to include 1s not already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}D + \overline{A}BCD + AB\overline{C}D + ABCD + A\overline{B}CD$

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + ABCD + A\overline{B}CD$

	ĊD	ĊD	CD	СD
ĀB				
ĀB				
AB				
AB				

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$

	ĊD	ĊD	CD	СD
ĀB				1
ĀB		1	1	
AB		1	1	
AB			1	

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) *even if they have already been looped.*
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$

	ĊD	ĊD	CD	СD
ĀB				
ĀB		1	1	
AB		1	1	
AB			1	

1. Construct the K map, place 1s as per the truth table.

2. Loop 1s that are not adjacent to any other 1s.

- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + ABCD + A\overline{B}CD$

	ĊD	ĒD	CD	СD
ĀB				
ĀB		1	1	
AB		1		
AB				

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) *even if they have already been looped.*
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$

	ĊD	ĒD	CD	СD
ĀB				
ĀB		1	1	
AB		1		
AB				

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped. (none here)
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Example (a) K-Map simplification

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$

	D	ĒD	CD	СD
ĀB				
ĀB		1	1	
AB		1	1	
AB				

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) *even if they have already been looped.*
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Example 1: K-Map simplification

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$

	ĊD	ĒD	CD	CD
ĀB				
ĀB		1	1	
AB		1	1	
AB				

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) *even if they have already been looped.*
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped. (none here)*
- 7. Form the OR sum of terms generated by each loop.

Example 1: K-Map simplification

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + ABCD + A\overline{B}CD$

	ĊD	ĊD	CD	сБ
ĀB				
ĀB		1	1	
AB		1	1	
AB				

BD + ACD + ABCD

1. Construct the K map, place 1s as per the truth table.

- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) *even if they have already been looped.*
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not already looped.*
- 7. Form the OR sum of terms generated by each loop.

Use a K-map to simplify:

$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$

$$y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$$

 $y = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{C}D + A\overline{B}C + \overline{D} = A'B'C'D'+C'D+AB'C+D'$

 $y = C(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$

$\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}' + \mathbf{C}'\mathbf{D} + \mathbf{A}\mathbf{B}'\mathbf{C} + \mathbf{D}'$

	CD AB	C'D'	C'D	CD	CD'
<u>Step 1:</u> Draw Kmap	A'B'				
	A'B				
	AB				
	AB'				

 $y = C(\overline{A}BD + D) + ABC + D$

 $\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}' + \mathbf{C}'\mathbf{D} + \mathbf{A}\mathbf{B}'\mathbf{C} + \mathbf{D}'$

AB CD	C'D'	C'D	CD	CD'
A'B'	1			
A'B				
AB				
AB'				

 $y = C(\overline{A}BD + D) + ABC + D$

$\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A'B'C'D'} + \mathbf{C'D'} + \mathbf{AB'C'D'}$

AB CD	C'D'	C'D	CD	CD'
A'B'	1	1		
A'B		1		
AB		1		
AB'		1		

 $y = C(\overline{A}BD + D) + ABC + D$

$\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}' + \mathbf{C}'\mathbf{D} + \mathbf{A}\mathbf{B}'\mathbf{C} + \mathbf{D}'$

AB CD	C'D'	C'D	CD	CD'
A'B'	1	1		
A'B		1		
AB		1		
AB'		1	1	1

 $y = C(\overline{A}BD + D) + ABC + D$

$\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}' + \mathbf{C}'\mathbf{D} + \mathbf{A}\mathbf{B}'\mathbf{C} + \mathbf{D}'$

AB CD	C' D'	C'D		С D '
A'B'	1	1		1
A'B	1	1		1
AB	1	1		1
AB'	1	1	1	1

 $y = C(\overline{A}BD + D) + ABC + D$

 $\mathbf{y} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{C}}\mathbf{D} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{D}} = \mathbf{A}'\mathbf{B}'\mathbf{C}'\mathbf{D}' + \mathbf{C}'\mathbf{D} + \mathbf{A}\mathbf{B}'\mathbf{C} + \mathbf{D}'$

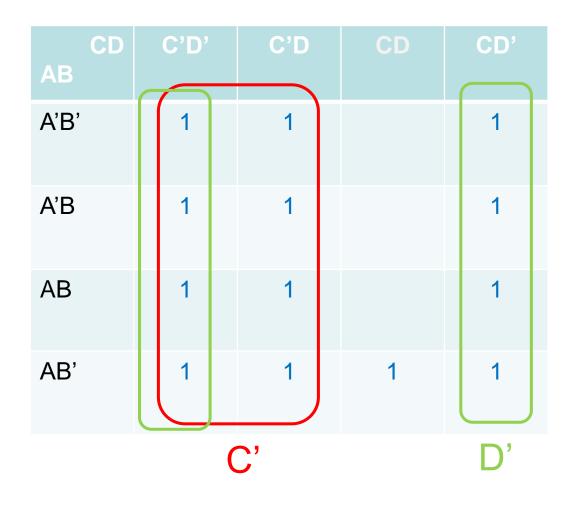
Step 3: Loop 1s in a pair, or in a quad, or in an octet

CD AB	C'D'	C'D	CD	CD'
A'B'	1	1		1
A'B	1	1		1
AB	1	1		1
AB'	1	1	1	1
	(C'		

 $y = C(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$

 $y = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{C}D + A\overline{B}C + \overline{D} = A'B'C'D'+C'D+AB'C+D'$

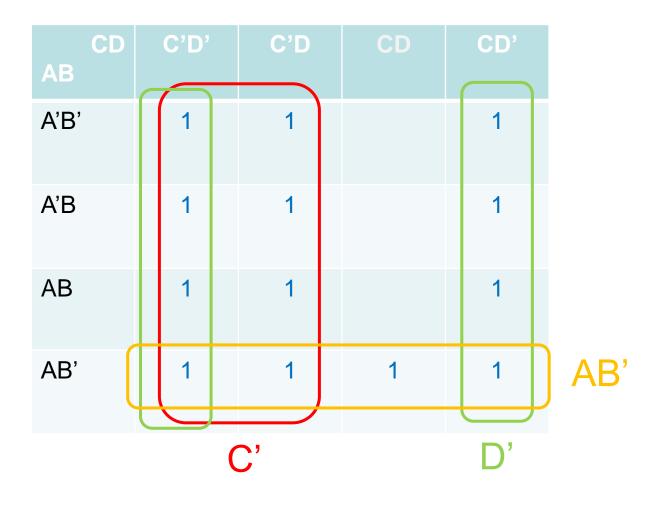
Step 3: Loop 1s in a pair, or in a quad, or in an octet



 $y = C(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$

 $y = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{C}D + A\overline{B}C + \overline{D} = A'B'C'D'+C'D+AB'C+D'$

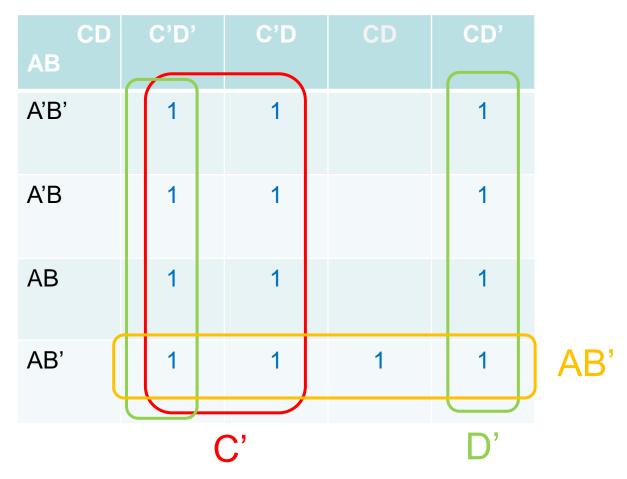
Step 3: Loop 1s in a pair, or in a quad, or in an octet



 $y = C(\overline{A}BD + D) + ABC + D$

$y = \overline{ABCD} + \overline{CD} + \overline{ABC} + \overline{D} = A'B'C'D' + C'D + AB'C + D'$ = AB' + C' + D'

<u>Step 4:</u> Write the OR sum of terms



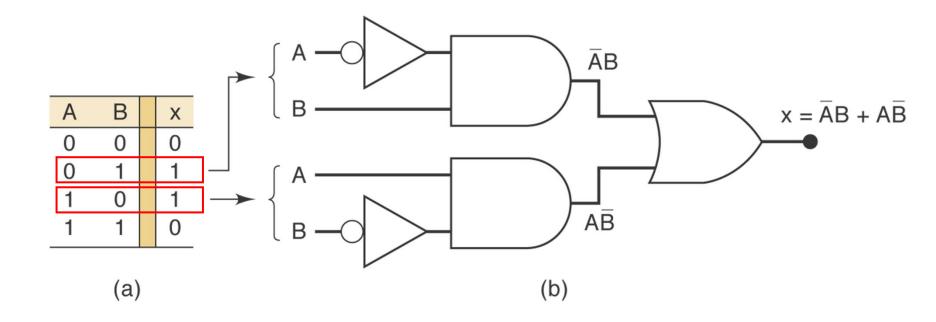
- Simpify the following expressions
 - using Boolean algebra and
 - using K-maps

(a)
$$x = \overline{A}\overline{B}\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + A\overline{B}C$$

(b) $x = \overline{C + D} + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD + AC\overline{D}$

Designing Combinational Logic Circuits

If we know the design conditions {(a) truth table} we want to design the logic circuit and then (b) implement the circuit with AND, OR and NOT gates.



Designing Combinational Logic Circuits

Design Procedure:

- 1. Set up truth table
- 2. Write AND term for each case where the output is HI
- 3. Write the SOP expression for the output
- 4. Simplify the expression
- 5. Implement the circuit

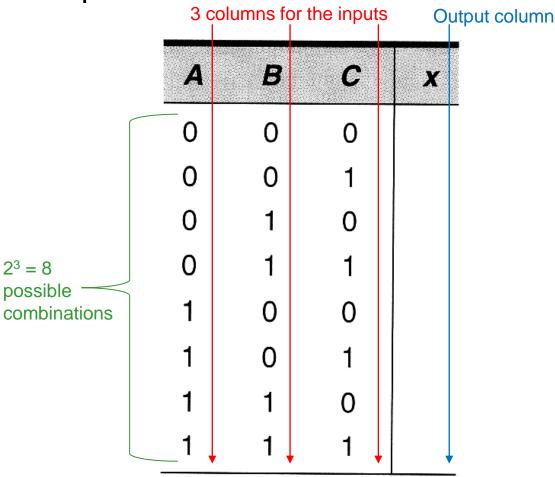
Designing Combinational Logic Circuits

Example 1:

Design a logic circuit that has three inputs, *A*, *B*, and *C*, whose output will be HIGH only when a majority of the inputs are HIGH.

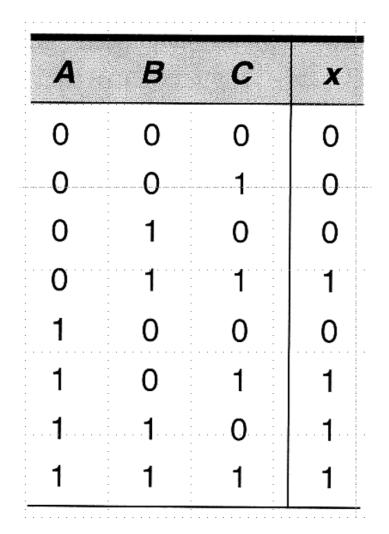
1) Set up truth table

Design a logic circuit that has <u>three inputs</u>, *A*, *B*, and *C*, whose output will be HIGH only when a majority of the inputs are HIGH.



1) Set up truth table

 Design a logic circuit that has three inputs, A, B, and C, whose output will be HIGH only when a majority of the inputs are HIGH.



2) Write AND term for each case where the output is HI

A	B	С	x	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\rightarrow \overline{A}BC$
1	0	0	0	
1	0	1	1	$\rightarrow A\overline{B}C$
1	1	0	1	$\rightarrow AB\overline{C}$
1	1	1	1	$\rightarrow ABC$

3) Write the SOP expression for the output

$x = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$

4) Simplify the expression – using Boolean Algebra Laws

$$x = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$
$$x = \overline{ABC} + ABC + A\overline{BC} + ABC + AB\overline{C} + ABC$$
$$x = BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$
$$x = BC + AC + AB$$

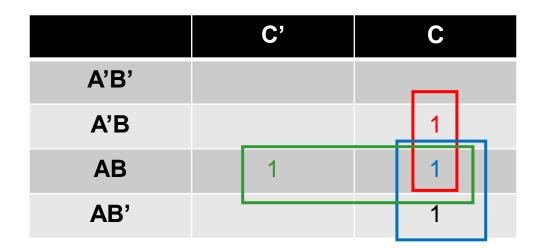
4) Simplify the expression – using K-Map method

X = A'BC + AB'C + ABC' + ABC

	C'	С
A'B'		
A'B		1
AB	1	1
AB'		1

4) Simplify the expression – using K-Map method

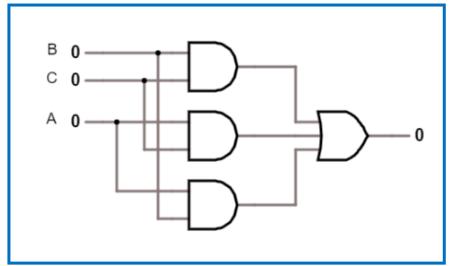
X = A'BC + AB'C + ABC' + ABC

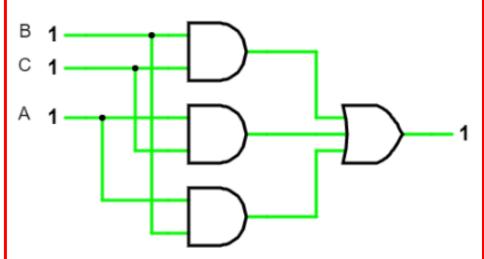


Simplified expression is AB + BC + AC

- 3) Write the SOP expression for the output
- 4) Simplified the expression: x = BC + AC + AB

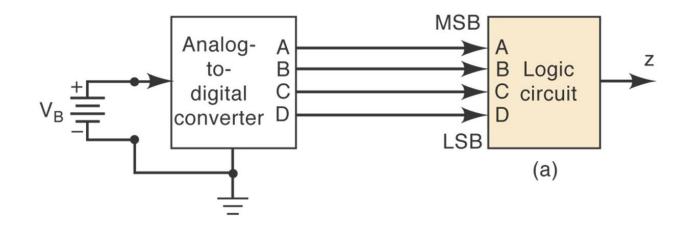
5) Implement circuit:

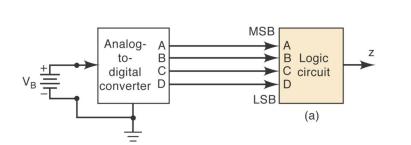




Example 3:

Design a battery monitor that will produce a HI (ie 1) so long as the battery is higher than 6 V (= 0110 in binary) on the output of the ADC (Analog to Digital Converter)



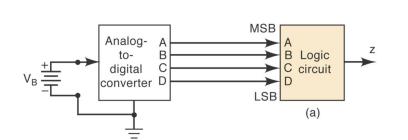


Step 1: Set up the Truth Table

	Α	В	С	D	z
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

Example 3: Design a battery monitor that will produce a HI

so long as the battery is higher than 6 V = 0110 on the output of the ADC (Analog to Digital Converter)

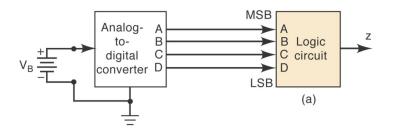


Step 1: Set up the Truth Table

	Α	В	С	D	Z
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Step 1: Set up the Truth Table		Α	В	С	D	z
	0	0	0	0	0	
	1	0	0	0	1	
Analog- A to- B B Logic z	2	0	0	1	0	
V _B + C circuit converter D C circuit	3	0	0	1	1	
	4	0	1	0	0	
<u>+</u>	5	0	1	0	1	
	6	0	1	1	0	
	7	0	1	1	1	1 → A'E
Step 2: Write AND term for	8	1	0	0	0	1 → AB
each case where the output is	9	1	0	0	1	1 → AB
HI	10	1	0	1	0	1 → AB
	11	1	0	1	1	1 → AB
	12	1	1	0	0	1 → AB
	13	1	1	0	1	1 → AB
	14	1	1	1	0	1 → AB
	15	1	1	1	1	1 → AB

<u>Step 1</u>: Set up the Truth Table



Step 2: Write AND term for each case where the output is HI

Step 3: Write the SOP for the output

z = A'BCD + AB'C'D' + AB'C'D+ AB'CD' + AB'CD + ABC'D' +ABC'D + ABCD' + ABCD

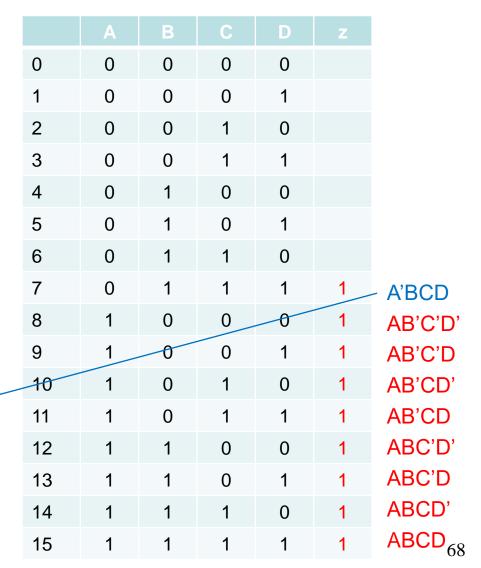
	Α	В	С	D	z	
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1	1	A'BCD
8	1	0	0	0	1	AB'C'D'
9	1	0	0	1	1	AB'C'D
10	1	0	1	0	1	AB'CD'
11	1	0	1	1	1	AB'CD
12	1	1	0	0	1	ABC'D'
13	1	1	0	1	1	ABC'D
14	1	1	1	0	1	ABCD'
15	1	1	1	1	1	ABCD ₆₇

Step 3: Write the SOP for the output

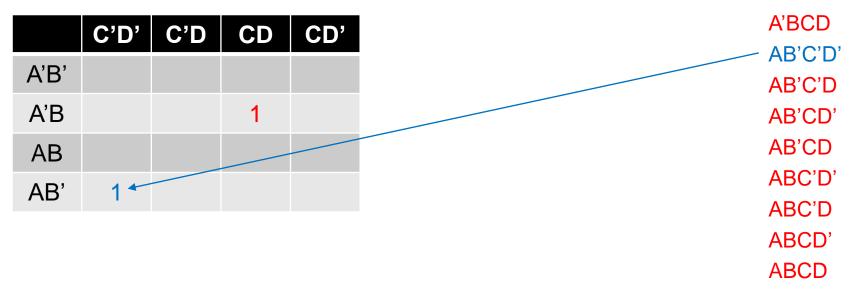
z = A'BCD + AB'C'D' + AB'C'D+ AB'CD' + AB'CD + ABC'D' +ABC'D + ABCD' + ABCD

Step 4: Simplify the expression

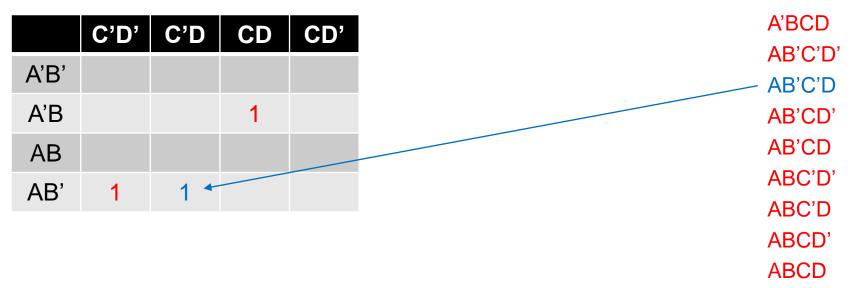
	C'D'	C'D	CD	CD'
A'B'				
A'B			1 -	
AB				
AB'				



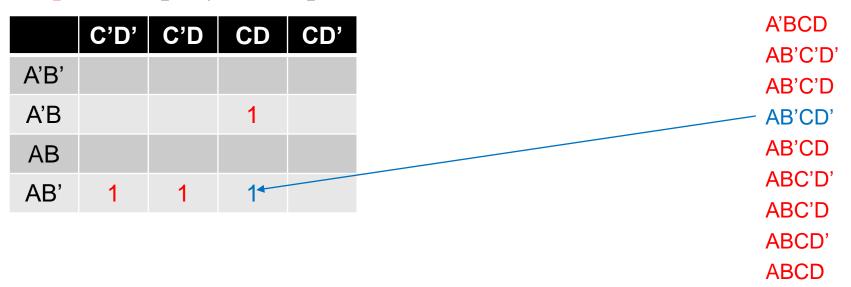
<u>Step 4:</u> Simplify the expression



<u>Step 4:</u> Simplify the expression



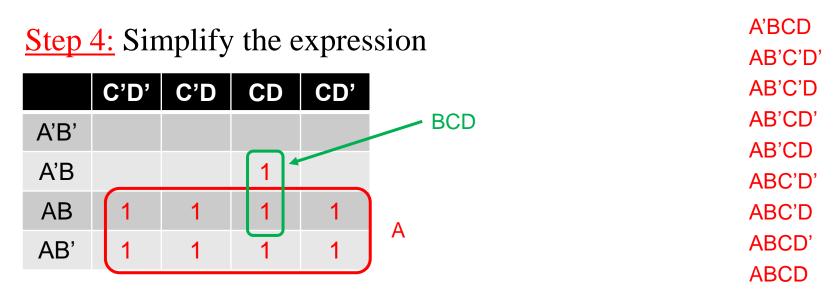
<u>Step 4:</u> Simplify the expression



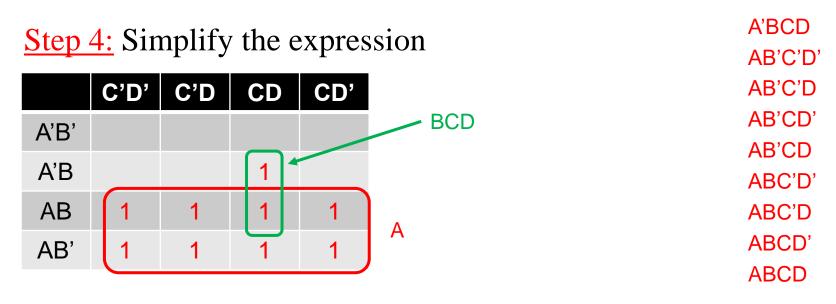
<u>Step 4:</u> Simplify the expression

	C'D'	C'D	CD	CD'
A'B'				
A'B			1	
AB	1	1	1	1
AB'	1	1	1	1

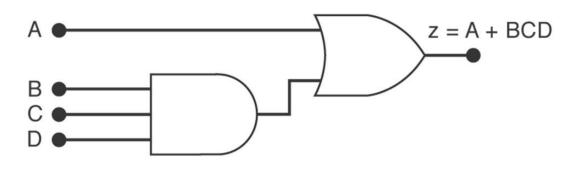
A'BCD AB'C'D' AB'CD' AB'CD' AB'CD ABC'D' ABC'D ABCD'



Simplified expression is BCD + A



<u>Step 5:</u> Implement the logic circuit



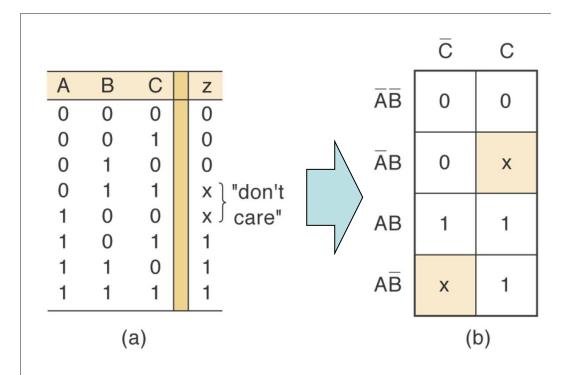
Don't care Output Conditions

In some cases, we may encounter output states that are 'impossible' – that is the corresponding input combination is not possible in practice

Eg: A digital display (0-9) that is driven by a binary input (4 bits): binary values 1010 -> 1111 never occur.

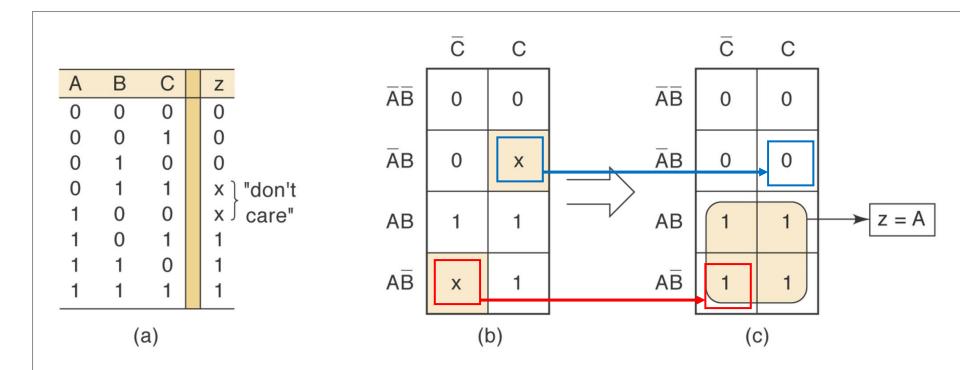
Don't care Output Conditions

Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occur when we know certain input conditions are impossible.



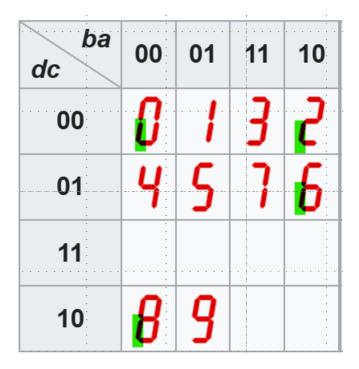
Don't care Output Conditions

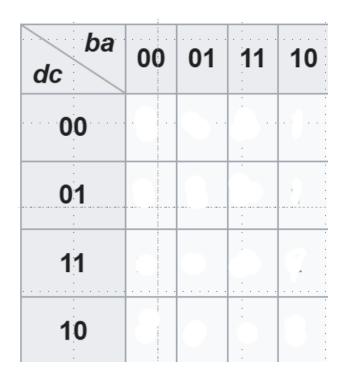
Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occur when we know certain input conditions are impossible.



Example: Binary Coded Decimal

Consider again the 4-bit binary number abcd, driving a 7-segment LED display. Simplify the expression that will light up the bottom left led on a 7-segment display.





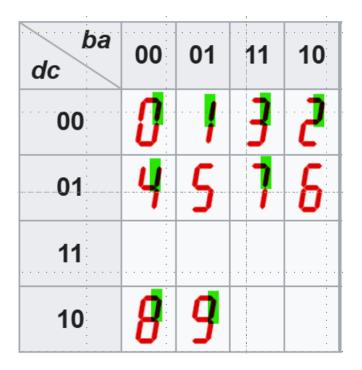
Example: Binary Coded Decimal

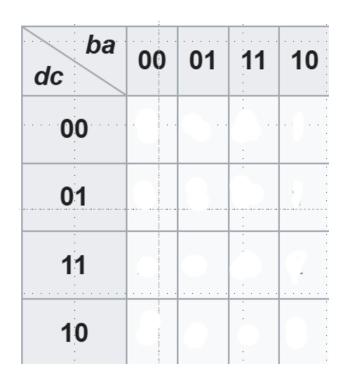
Consider again the 4-bit binary number abcd, driving a 7-segment LED display. Simplify the expression that will light up the bottom left led on a 7-segment display.

ba dc	00	01	11	10	ba dc	00	01	11	10	ba dc	00	01	11	10
00	0		3	2	00	1	0	0	1	00	1	0	0	1
01	4	5	7	6	01	0	0	0	1	01	0	0	0	1
11	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · ·	11	х	х	x	х	11	0	0	0	1
10	8	9			10	1	0	х	х	10	1	0	0	1

Exercise: Binary Coded Decimal

Consider again the 4-bit binary number abcd, driving a 7-segment LED display. Simplify the expression that will light up the top right led on a 7-segment display.





Determine the minimum expression for each of the K maps shown below.

	ĒÐ	ĒD	CD	CD		ĒD	ĒD	CD	CD		Ē	С	
ĀB	1	1	1	1	ĀB	1	0	1	1	ĀB	0	1	
ĀВ	1	1	0	0	ĀB	1	0	0	1	ĀВ	0	0	
AB	0	0	0	1	AB	0	0	0	0	AB	1	0	
AB	0	0	1	1	AB	1	0	1	1	AB	1	×	
(a)						(b)					(C)		

Determine the input conditions needed to produce a HI output in the circuit below

