
XMUT 101 

Engineering Technology

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington



2

Exclusive OR and Exclusive NOR Circuits

• The exclusive OR, abbreviated XOR 

produces a HIGH output whenever the two 

inputs are at opposite levels.

• The exclusive NOR, abbreviated XNOR 

produces a HIGH output whenever the two 

inputs are at the same level.

• XOR and XNOR outputs are opposite.



3

FIGURE 4-20    (a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c) IEEE/ANSI symbol for XOR gate.



4

FIGURE 4-21    (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (c) IEEE/ANSI symbol.



5

Determine the O/P waveform of the circuit below:

O/P Hi when I/P at different levels



6

Design a circuit so that 

the O/P will only be HI 

when the combination of 

two sets of two bit binary 

numbers are equal.



7



8

Parity Generator and Checker

• Parity bit: extra bit added to data to make the number 

of 1’s even (for even parity) or odd (for odd parity)

• It is used to detect error in transmission

• Example: if we use an even parity system:
• Data: 1 1 1 0 – we add a parity bit 1

• Data: 1 1 0 0 – we add parity bit 0

• Data: 0 0 0 0 – we add a parity bit 0

• A Parity Checker will return a TRUE error bit if the number of 

1’s is odd (for even parity) and if the number of 1’s is even (for 

odd parity)



9

Parity Generator

• How to construct an even parity generator (3 bits input)?

• Truth table:

A B C P

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

𝐴𝐵⨁𝐴𝐵 = ҧ𝐴𝐵 + 𝐴 ത𝐵 𝐴𝐵⨁𝐴𝐵 = ҧ𝐴 ത𝐵 + 𝐴𝐵



10

Parity Generator

• How to construct an even parity generator (3 bits input)?

• Truth table:

A B C P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

𝐴𝐵⨁𝐴𝐵 = ҧ𝐴𝐵 + 𝐴 ത𝐵

𝑃 = ҧ𝐴 ത𝐵𝐶 + ҧ𝐴𝐵 ҧ𝐶 + 𝐴 ത𝐵 ҧ𝐶 + 𝐴𝐵𝐶
      = ҧ𝐴( ത𝐵𝐶 + 𝐵 ҧ𝐶) + 𝐴( ത𝐵 ҧ𝐶 + 𝐵𝐶)
     = ഥ 𝐴 𝐵𝐶⨁𝐵𝐶 + 𝐴 𝐵𝐶⨁𝐵𝐶

= ҧ𝐴𝑋 + 𝐴 ത𝑋
= 𝐴⨁𝐵⨁𝐶

       

𝐴𝐵⨁𝐴𝐵 = ҧ𝐴 ത𝐵 + 𝐴𝐵



11

Parity Generator and Checker

Similarly for 4 bits (even parity):



12

Parity Checker

• Exercise:

• Design an even parity checker (2 data bits) using a truth table 

• Express it using XOR or XNOR gates

A B P E

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



13

Parity Generator and Checker

Similarly for 4 bits:

Even Parity:



Karnaugh Map (K-Map)

• An alternate approach to representing Boolean 

functions

• Can be used to minimize Boolean functions

• Easy conversion from truth table to K-Map to 

minimized SOP representation.

• Simple rules (steps) used to perform minimization

• Leads to minimized SOP representation.

– Much faster and more efficient than previous 

minimization techniques with Boolean algebra.



15

Karnaugh Map (K-Map) Method

• The truth table values are placed in the K 
map as shown below.  

B

A

B’ B

A’ 1 1

A 0 0

C

AB

C’ C

A’B’

A’B

AB

AB’



16

Karnaugh Map (K-Map) Method

• The truth table values are placed in the K 
map.  

• Adjacent K map square differ in only one 

variable both horizontally and vertically.



17

Karnaugh Map (K-Map) Method

• The truth table values are placed in the K 
map.  

• Adjacent K map square differ in only one 
variable both horizontally and vertically.

• The pattern from top to bottom and left to 

right must be in the form BAABBABA ,,,

B

A

B’ B

A’ 1 1

A 0 0

CD

AB

C’D’ C’D CD CD’

A’B’

A’B

AB

AB’

2 inputs: 4 inputs:



18

Karnaugh Map (K-Map) Method

• The truth table values are placed in the K 
map as shown in on next slide.  

• Adjacent K map square differ in only one 
variable both horizontally and vertically.

• The pattern from top to bottom and left to 
right must be in the form

• A SOP expression can be obtained by OR-ing 

all squares that contain a 1.

BAABBABA ,,,



Karnaugh Maps

• A Karnaugh map is a graphical tool for assisting in the 

general simplification procedure.

• Two variable maps.

0

A

1 0

1

B

0 1

0

1

F=AB+A’B

B’       B

A’

A

Example 1:



Karnaugh Maps

• A Karnaugh map is a graphical tool for assisting in the 

general simplification procedure.

• Two variable maps.

0
A

1 1

1

B
0 1

0

1
F=AB +AB +AB

B’       B

A’

A

Example 2:



Karnaugh Maps

°Three variable maps.

F = A’B’C + A’BC’ +ABC’ +AB’C +ABC + ABC

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Inputs
Output

3rd row

4th row

6th row

7th row

8th row

9th row

Sum of Products expression (SOP)



Karnaugh Maps

°Three variable maps.

F = A’B’C + A’BC’ +ABC’ +AB’C +ABC + ABC

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

0

A

1 1

1

B’C’ B’C

A’

A

BC

0

1 1

1

BC BC’

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1



Rules for K-Maps

▪ We can reduce functions by circling 1’s in the K-map

▪ Each circle represents min-term reduction

▪ Following circling, we can deduce minimized and-or 

form.

Rules to consider

Every cell containing a 1 must be included at least 

once.

The largest possible “power of 2 rectangle” must be 

enclosed.

The 1’s must be enclosed in the smallest possible 

number of rectangles.

  



24

K-Maps and truth tables for (a) two variables.



25

K-Maps and truth tables for (b) three variables.



26

K-Maps and truth tables for (c) four variables.



27

Karnaugh Map Method

• Loop adjacent groups of 2, 4, or 8 that contain 1’s 

will result in further simplification.

• When the largest possible groups have been 

looped, only the common terms are placed in the 

final expression.

• Looping may also be wrapped between top, 

bottom, and sides.



28

Looping pairs of adjacent 1’s – One variable is eliminated.



29

Looping groups of four adjacent 1’s – Two variables are eliminated. 



30

Complete K-Map simplification process

1. Construct the K map, place 1s as per the truth table.

2. Loop 1s that are not adjacent to any other 1s.

3. Loop 1s that are in pairs and cannot be looped into quads or 

octets.

4. Loop 1s in octets (8) even if they have already been looped.

5. Loop quads (4) that have one or more 1s not already looped.

6. Loop any pairs (2) necessary to include 1s not already looped.

7. Form the OR sum of terms generated by each loop.



31

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD



32

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped.

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B

AB

AB

AB



33

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped.

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



34

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped.

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



35

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets. 

4.Loop 1s in octets (8) even if they have already been 

looped.

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



36

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped.  (none here)

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



37

Example (a) K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped. 

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



38

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped. 

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped. (none here)

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1



39

Example 1: K-Map simplification

Simplify the following Boolean expression: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

1.Construct the K map, place 1s as per the truth table.

2.Loop 1s that are not adjacent to any other 1s.

3.Loop 1s that are in pairs and cannot be looped into 

quads or octets.

4.Loop 1s in octets (8) even if they have already been 

looped.

5.Loop quads (4) that have one or more 1s not 

already looped.

6.Loop any pairs (2) necessary to include 1s not 

already looped.

7.Form the OR sum of terms generated by each loop.

CD CD CD CD

A B 1

AB 1 1

AB 1 1

AB 1

BD + ACD + ABCD 



40

Example 2:

Use a K-map to simplify:

DCBA)DDBA(Cy +++=



41

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 



42

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’

A’B

AB

AB’

Step 1:

Draw Kmap



43

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1

A’B

AB

AB’

Step 2:

Insert 1

according

to each 

term in the

Boolean

expression



44

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1

A’B 1

AB 1

AB’ 1

Step 2:

Insert 1

according

to each 

term in the

Boolean

expression



45

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1

A’B 1

AB 1

AB’ 1 1 1

Step 2:

Insert 1

according

to each 

term in the

Boolean

expression



46

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1 1

A’B 1 1 1

AB 1 1 1

AB’ 1 1 1 1

Step 2:

Insert 1

according

to each 

term in the

Boolean

expression



47

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1 1

A’B 1 1 1

AB 1 1 1

AB’ 1 1 1 1

Step 3:

Loop 1s in

a pair,

or in a quad, 

or in an octet

C’



48

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1 1

A’B 1 1 1

AB 1 1 1

AB’ 1 1 1 1

Step 3:

Loop 1s in

a pair,

or in a quad, 

or in an octet

C’ D’



49

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1 1

A’B 1 1 1

AB 1 1 1

AB’ 1 1 1 1

Step 3:

Loop 1s in

a pair,

or in a quad, 

or in an octet

C’ D’

AB’



50

DCBA)DDBA(Cy +++=

DCBADCDCBAy +++= = A’B’C’D’+C’D+AB’C+D’

= AB’ + C’ + D’ 

CD

AB

C’D’ C’D CD CD’

A’B’ 1 1 1

A’B 1 1 1

AB 1 1 1

AB’ 1 1 1 1

Step 4:

Write the

OR sum of

terms 

C’ D’

AB’



30/05/2024 XMUT241 : Systems Programming 51

• Simpify the following expressions

• using Boolean algebra and

• using K-maps



52

Designing Combinational Logic Circuits

If we know the design conditions {(a) truth table} we want to 

design the logic circuit and then (b) implement the circuit with 

AND, OR and NOT gates.



53

Designing Combinational Logic Circuits

Design Procedure:

1. Set up truth table

2. Write AND term for each case where the output is HI

3. Write the SOP expression for the output

4. Simplify the expression

5. Implement the circuit



54

Designing Combinational Logic Circuits

Example 1:

Design a logic circuit that has three inputs, A, B, 

and C, whose output will be HIGH only when a 

majority of the inputs are HIGH.



55

1) Set up truth table

Design a logic circuit that has three inputs, A, B, and C, 

whose output will be HIGH only when a majority of the 

inputs are HIGH.
3 columns for the inputs Output column

23 = 8 

possible

combinations



56

1) Set up truth table

• Design a logic circuit that has three inputs, A, B, and C, whose 

output will be HIGH only when a majority of the inputs are HIGH.



57

1) Set up truth table

2) Write AND term for each case where the output is HI



58

𝑥 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶

3) Write the SOP expression for the output



59

ABACBCx

)CC(AB)BB(AC)AA(BCx

ABCCABABCCBAABCBCAx

ABCCABCBABCAx

++=

+++++=

+++++=

+++=

3) Write the SOP expression for the output

4) Simplify the expression – using Boolean Algebra Laws



60

3) Write the SOP expression for the output

4) Simplify the expression – using K-Map method

C’ C

A’B’

A’B 1

AB 1 1

AB’ 1

X = A’BC + AB’C + ABC’ + ABC



61

3) Write the SOP expression for the output

4) Simplify the expression – using K-Map method

C’ C

A’B’

A’B 1

AB 1 1

AB’ 1

X = A’BC + AB’C + ABC’ + ABC

Simplified expression is AB + BC + AC 



62

3) Write the SOP expression for the output

4) Simplified the expression:   x = BC + AC + AB

5) Implement circuit:



63

Example 3: 

Design a battery monitor that will produce a HI (ie 1) so 

long as the battery is higher than 6 V (= 0110 in binary) on 

the output of the ADC (Analog to Digital Converter)



64

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

Step 1: Set up the Truth Table A B C D z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1



65

Example 3: Design a battery monitor that will produce a HI 

so long as the battery is higher than 6 V = 0110 on the 

output of the ADC (Analog to Digital Converter)

Step 1: Set up the Truth Table A B C D z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1



66

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

Step 1: Set up the Truth Table A B C D z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 2:  Write AND term for 

each case where the output is 

HI



67

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

Step 1: Set up the Truth Table A B C D z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 2:  Write AND term for 

each case where the output is 

HI

Step 3: Write the SOP for the 

output

z = A’BCD + AB’C’D’ + AB’C’D    

+ AB’CD’ + AB’CD + ABC’D’ + 

ABC’D + ABCD’ +  ABCD



68

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A B C D z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 3: Write the SOP for the 

output

z = A’BCD + AB’C’D’ + AB’C’D    

+ AB’CD’ + AB’CD + ABC’D’ + 

ABC’D + ABCD’ +  ABCD

Step 4: Simplify the 

expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB

AB’



69

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB

AB’ 1



70

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB

AB’ 1 1



71

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB

AB’ 1 1 1



72

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB 1 1 1 1

AB’ 1 1 1 1



73

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB 1 1 1 1

AB’ 1 1 1 1
A

BCD

Simplified expression is BCD + A



74

Example 3: Design a battery monitor that will produce a HI 

as long as the battery is higher than 6 V = 0110 on the output 

of the ADC (Analog to Digital Converter)

A’BCD

AB’C’D’

AB’C’D

AB’CD’

AB’CD

ABC’D’

ABC’D

ABCD’

ABCD

Step 4: Simplify the expression

C’D’ C’D CD CD’

A’B’

A’B 1

AB 1 1 1 1

AB’ 1 1 1 1
A

BCD

Step 5: Implement the logic circuit



75

Don’t care Output Conditions

In some cases, we may encounter output states that are 

‘impossible’ – that is the corresponding input combination is 

not possible in practice

Eg: A digital display (0-9) that is driven by a binary input (4 

bits): binary values 1010 -> 1111 never occur.



76

Don’t care Output Conditions

Can be changed 0/1 so that the simplest expression can be 

obtained from the K-map. Typically occur when we know 

certain input conditions are impossible.



77

Don’t care Output Conditions

Can be changed 0/1 so that the simplest expression can be 

obtained from the K-map. Typically occur when we know 

certain input conditions are impossible.



78

Example: Binary Coded Decimal

Consider again the 4-bit binary number abcd, driving a 7-segment LED 

display. Simplify the expression that will light up the bottom left led on a 7-

segment display.



79

Example: Binary Coded Decimal

Consider again the 4-bit binary number abcd, driving a 7-segment LED 

display. Simplify the expression that will light up the bottom left led on a 7-

segment display.



80

Exercise: Binary Coded Decimal

Consider again the 4-bit binary number abcd, driving a 7-segment LED 

display. Simplify the expression that will light up the top right led on a 7-

segment display.



30/05/2024 XMUT241 : Systems Programming 81



30/05/2024 XMUT241 : Systems Programming 82


	Slide 1: XMUT 101  Engineering Technology
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Determine the O/P waveform of the circuit below:
	Slide 6: Design a circuit so that the O/P will only be HI when the combination of two sets of two bit binary numbers are equal.
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Karnaugh Map (K-Map)
	Slide 15: Karnaugh Map (K-Map) Method
	Slide 16: Karnaugh Map (K-Map) Method
	Slide 17: Karnaugh Map (K-Map) Method
	Slide 18: Karnaugh Map (K-Map) Method
	Slide 19:     Karnaugh Maps
	Slide 20:     Karnaugh Maps
	Slide 21:     Karnaugh Maps
	Slide 22:     Karnaugh Maps
	Slide 23: Rules for K-Maps
	Slide 24: K-Maps and truth tables for (a) two variables.
	Slide 25: K-Maps and truth tables for (b) three variables.
	Slide 26: K-Maps and truth tables for (c) four variables.
	Slide 27: Karnaugh Map Method
	Slide 28
	Slide 29: Looping groups of four adjacent 1’s – Two variables are eliminated. 
	Slide 30: Complete K-Map simplification process
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Designing Combinational Logic Circuits
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

