ENGR101

ENGINEERING TECHNOLOGY

Practice Exam (June 12, 2024)

Time allowed: 120 MINUTES

CLOSED BOOK

You will be supplied with additional printed resources that you may use. (Appendix section on pages 10-11)

Permitted materials:	Non-programmable calculators are allowed.
	Only printed dictionaries are allowed.
	Printed foreign to English language dictionaries are allowed.
Instructions:	There are 4 questions. Attempt ALL questions.

Space for working out your solutions is provided at the end of every question.

Question	Торіс	Allocated Marks	Obtained Marks	Comments
1	Number Systems	25		
2	Boolean Algebra and K-Maps	25		
3	Logic Circuit Application	25		
4	Logic Circuit Application	25		
	TOTAL	100		

ID Number:

This blank space can be used to write your answers in case there is insufficient space in the allocated space after each question.

ID	Number:	
----	---------	--

Question 1 – Number systems	25 marks
a) Convert the binary number 0 0 1 0 1 0 1 0 1 0 to its decimal number equivalent.	(3 marks)
0 0 1 0 1 0 Answer: 4 2	
Show your calculations in the space below. Write your answer in the space provide	ded above.
2^5+2^3+2^1=42	

b) Convert the decimal number 170 to its hexadecimal number equivalent. (2 marks)

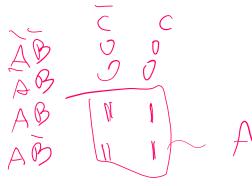
(170)₁₀ A A

Show your calculations in the space below. Write your answer in the grid shown above starting from the right-hand side box.

 $\frac{170/16 = 10 \text{ R}10 \text{ A}}{10/16 = 0 \text{ R}10 \text{ A}}$

		ID Number:	
c) Cor	overt the following octal number to a c	lecimal number.	(2 marks)
12	3 ₈ = 83		
Show	your calculations in the space below.	Write your answer in the space provi	ided above.
1x8^2	$+2x8^{1}+3=83$		
d) Cor	nplete the following binary number s	ubtraction:	(4 marks)
1001	0 1 1 - 1 1 0 1 0 1		
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
01	0 1 1 0 = 22		
e) Con i.	evert the decimal number $(-12)_{10}$ to 6- signed magnitude +12 = 001010 -12 = 101010	bit binary representation using	(9 marks)
ii.	one's complement -12= 110101		
iii.	two's complement -12= 110110		
	present (0.45)10 in binary. Stop after 4	decimal places and find the % round	ing error. (5 marks)
	Stopping after 4 decimal places is 0.0 Error = (0.45-0.4375)/0.45 = 0.0278		

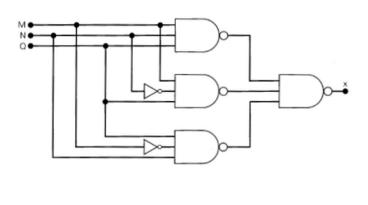
ID Number:


Question 2 – Boolean Algebra and K-Maps

(Refer to Appendix for Boolean Laws summary)

a) Use Boolean algebra to simplify

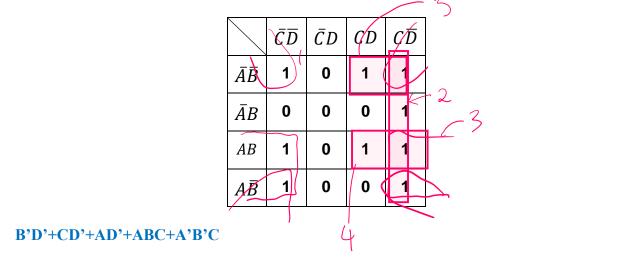
 $X = AB + A(\bar{B} + C) + AB\bar{C}$


- X=AB+AB'+AC+ABC' = A(B+B')+AC+ABC' = A+AC+ABC' =A+ABC' = A
- b) Repeat a) but this time using a K-map.

(5 marks) AB+AB'+AC+ABC

c) Write the expression for the output x and simplify it using Boolean Algebra

(5 marks)



 $X = \overline{M N Q} \cdot \overline{M N Q} \cdot \overline{M N Q}$ $X = M N Q + M \overline{N} Q + \overline{M} N Q$ X = MQ + NQ X = Q(M + N) $M \longrightarrow Q$ $Q \longrightarrow X$

25 marks

(5 marks)

ID Number:

d) Simplify the following K-map and *write the resulting Boolean expression*. (5 marks)

e) Simplify the following K-map and write the resulting Boolean expression. (5 marks)

	$\bar{C}\bar{D}$	ĒD	CD	$C\overline{D}$	
$\bar{A}\bar{B}$		0	1	1	
ĀΒ	1	0	x	0	
AB	0	1	x	x	
$A\overline{B}$	0	x	1	1	
		ટ	V		

B'C+AD+A'C'D'

8

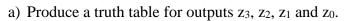

Question 3 – Logic Circuit Applications

Figure below shows a multiplier circuit that takes *two 2-bit binary numbers* x_1x_0 and y_1y_0 , and produces an output binary number $z_3z_2z_1z_0$ that is equal to the **product of the input numbers**.

Multiplier

MSE

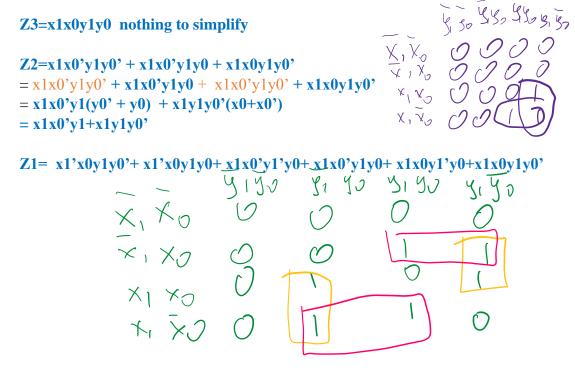
LSB

X 1	X0	y 1	y0	Z 3	Z 2	Z 1	ZO	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	0	0	0	0	0	
0	1	0	1	0	0	0	1	
0	1	1	0	0	0	1	0	
0	1	1	1	0	0	1	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	2
1	0	1	0	0	1	0	0	4
1	0	1	1	0	1	1	0	6
1	1	0	0	0	0	0	0	
1	1	0	1	0	0	1	1	3
1	1	1	0	0	1	1	0	6
1	1	1	1	1	0	0	1	9

b) Write the SOP expressions for the outputs z_3 , z_2 , z_1 and z_0 .

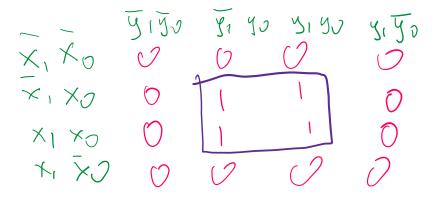
Z3=x1x0y1y0

Z2=x1x0'y1y0' + x1x0'y1y0 + x1x0y1y0'


Z1= x1'x0y1y0'+ x1'x0y1y0+ x1x0'y1'y0+ x1x0'y1y0+ x1x0y1'y0+x1x0y1y0'

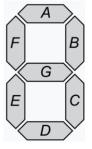
Z0= x1'x0y1'y0+ x1'x0y1y0+ x1x0y1'y0+ x1x0y1y0

(10 marks)


(5 marks)

c) If needed, simplify the expressions for z_3 , z_2 , z_1 , z_0 . You don't have to use K-maps. (10 marks)

Z1 = x1x0'y0+x1y1'y0+x1'x0y1+x0y1y0'= x1y0 (x0'+y1')+x0y1 (x1'+y0')


Z0= x1'x0y1'y0+ x1'x0y1y0+ x1x0y1'y0+ x1x0y1y0

Z0=x0y0

Question 4 – Logic Circuit Applications

We want to design a logic circuit for a 7-segment LED display shown below.

The inputs are 4 binary digits **d**, **c**, **b**, **a**, which represent the number to be displayed on the LED. Bit **d** is the most significant bit (MSB), and **a** is the least significant bit (LSB). Each LED segment (labelled A, B, C, ... G on the diagram) has its own logic. For example, LED E is ON when **dcba** represent decimal numbers 0, 2, 6 or 8.

d) Produce a truth table to drive LED labelled **C**.

013456789

(6 marks)

d	С	b	a	С	
0	0	0	0	1	d'c'b'a'
0	0	0	1	1	d'c'b'a
0	0	1	0	0	
0	0	1	1	1	d'c'ba
0	1	0	0	1	d'cb'a'
0	1	0	1	1	d'cb'a
0	1	1	0	1	d'cba'
0	1	1	1	1	d'cba
1	0	0	0	1	dc'b'a'
1	0	0	1	1	da'b'a'
1	0	1	0	X	
1	0	1	1	X	
1	1	0	0	X	
1	1	0	1	X	
1	1	1	0	X	
1	1	1	1	X	

e) Write the sum-of-products (SOP) expression for C (4 marks)
C = d'c'b'a' + d'c'b'a + d'cb'a' + d'cb'a + d'cba' + d'cba' + dc'b'a' + da'b'a'

f) Use a K-map to simplify the logic expression for C.

(8 marks)

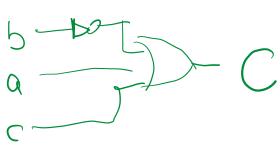
(Write your answer in the table provided below. Clearly mark the loop(s) of adjacent 1s.

	bā	Бa	ba	bā
$\bar{d}ar{c}$	1	1	1	0
d̄c	1	1	1	1
dc	x	х	x	×
dī	1	1	x	х

C = c+b'+a

It is tempting to solve for C' = d'c'ba' and invert using DeMorgan. This leads to C''=C=d+c+b'+a.

This is correct, but not as simple as possible.


Instead, we can include the first don't care condition:

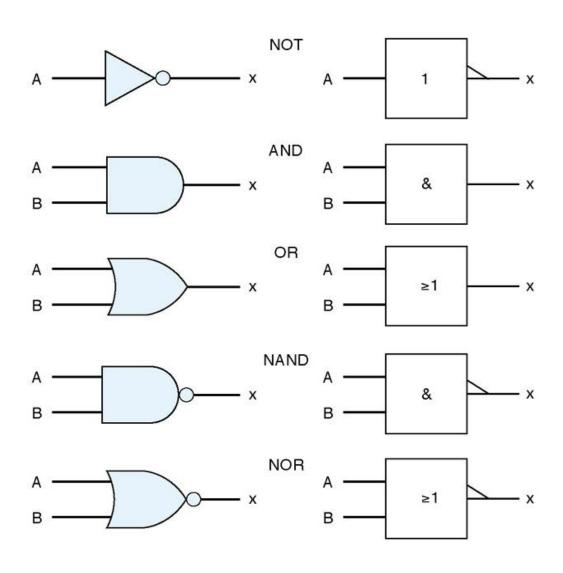
C'=d'c'ba' + dc'ba' which gives C'=c'ba', which after inverting gives

C''=C=c+b'+a which is what we obtained using the K-Map

g) Draw a logic diagram for G using as **few gates as possible**.

(7 marks)

Fundamental Laws and Theorems of Boolean Algebra


1.	X + 0 = X
2.	X + 1 = 1 OR operations
3.	X + X = X
4.	$X + \overline{X} = 1$
5.	X . 0 =0
б.	X . 1 =X AND operations
7.	$X \cdot X = X$
8.	$\mathbf{X} \cdot \overline{\mathbf{X}} = 0$
9.	X = X Double complement
10.	X + Y = Y + X Commutative laws
11.	XY = YX
12.	(X + Y) + Z = X + (Y + Z) Associative laws
13.	(X . Y). Z = X. (Y. Z)
14.	X(Y + Z) = XY + XZ Distribution Law
15.	X + Y . Z = (X + Y) . (X + Z) Dual of Distributive Law
16.	X + XZ = X Laws of absorption
17.	X(X+Z) = X
18.	$X + \overline{X} Y = X + Y$] Identity Theorems
19.	$X(\overline{X}+Y)=X.Y$
20.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$ De Morgan's Theorems
21.	$\overline{X.Y} = \overline{X} + \overline{Y}$

Standard Logic Symbols

Used in lectures

<u>book</u>

Used in text

