
© Mohammad Nekooei and Peter Andreae

COMP102: 107

Object oriented programming

• Key idea of OO programming

• program structured into classes of objects.

• each class specifies a kind of object – e.g., the actions it can perform.

• Calling methods in OO languages like java

• tell an object to perform a method, passing arguments

• Making objects

• Some objects are predefined.

• Create objects with bluej:

• Right-click on class, and select new ……

• This is how we run programs with BlueJ.

• not standard, and not a general solution

Fido

Fido: run fast!

Fido: get the ball!

Fido: eat!

© Mohammad Nekooei and Peter Andreae

COMP102: 108

Objects

Question:

 How can a program make new objects?

More Questions:

 What is an object anyway?

 Why do we need them?

• An object is typically a collection of data with

a set of actions it can perform.

• The objects we have made so far are a bit strange – no data; just actions.

(TemperatureConverter, Drawer)

Instance Instance

Instance Instance

Class

Objects

Individual Dogs

Class of

all Dogs

Fido Snoopy

Scooby DooSpot

myDog

Dog

Fido

© Mohammad Nekooei and Peter Andreae

COMP102: 109

Examples of objects

Butterfly program

• Each butterfly is represented by an object which stores the state of the butterfly (position, wing

state, direction)

• Butterflies have methods

• move(double dist) and

• land()

• CartoonFigure program

• Each cartoon figure is represented by an object which stores the state of the cartoon figure

(image, position, direction facing, smile/frown).

• CartoonFigure objects have methods

• walk(double dist)

• smile() frown()

• lookLeft() lookRight()

• speak(String words) think(String words)

© Mohammad Nekooei and Peter Andreae

COMP102: 110

Using objects

• If the variable bf1 and bf2 contained Butterfly objects, you could do:

public void showButterflies(){

Butterfly bf1 = ?????

Butterfly bf2 = ?????

bf1.move(10);

bf2.move(20);

bf1.land();

bf2.move(20);

bf1.move(5);

}

Problem:

How do you get a Butterfly object into the variables?

Nothing new here:

Just standard method calls!

bf1

Butterfly

bf2

Butterfly

© Mohammad Nekooei and Peter Andreae

COMP102: 111

Creating Objects

• Need to construct new objects:

• New kind of expression: new

Butterfly bf1 = new Butterfly(… …)

• Constructor calls are like method calls that return a value.

• have ()

• may need to pass arguments

• returns a value – the new object that was constructed.

• Constructor calls are NOT method calls

• there is no object to call a method on.

• must have the keyword new

• name must be the name of the class

Calling the constructor

100, 300

Creates a new object, which is put into bf1

bf1

Butterfly

© Mohammad Nekooei and Peter Andreae

COMP102: 112

Creating Objects: new

Butterfly b1 = new Butterfly(100, 300);

UI.setColor(new Color(255, 190, 0));

• Calling a constructor:

• new (a keyword)

• Butterfly (the type of object to construct)

• (…) (arguments: specifying information needed to construct

 the new object)

• This is an expression: it returns the new object

• can put in a variable

• can use in an enclosing expression or method call

new 〈Class name〉 〈arguments〉()

© Mohammad Nekooei and Peter Andreae

COMP102: 113

Reading Documentation

• Documentation of a class:

• Specifies the methods:

• name

• type of the return value (or void if no value returned)

• number and types of the parameters.

 void move (double dist)

 moves the butterfly by dist, in its current direction.

• Specifies the constructors:

• number and types of the parameters

(name is always the name of the class,

 return type is always the class)

Butterfly(double x, double y)

requires the initial position of the butterfly

Bluej lets you see the

documentation of your classes

© Mohammad Nekooei and Peter Andreae

COMP102: 114

Example: Butterfly Grove program

public class ButterflyGrove{

 /** A grove of Butterflies which

 fly around and land */

 public void oneButterfly(){
 Butterfly b1 = new Butterfly(50, 20);

 b1.move(5);

 b1.move(10);

 b1.move(15);

 b1.move(10);
 b1.move(11);

 b1.move(12);

 b1.move(13);

 b1.move(14);

 b1.move(15);
 b1.move(16);

 b1.move(10);

 b1.land();

 }

public void twoButterflies(){

 Butterfly b1 = new Butterfly(100, 20);

 b1.move(5);

 b1.move(10);
 b1.move(15);

 double x = 400*Math.random();

 Butterfly b2 = new Butterfly(x, 40);

 b2.move(10);

 b1.move(15);
 b2.move(10);

 b1.move(12);

 b2.move(10);

 b1.move(11);

 b1.move(7);
 b1.land();

 b2.move(20);

b2.move(25);

b2.land();

}

© Mohammad Nekooei and Peter Andreae

COMP102: 115

Objects are values too:

• Objects can be passed to methods, just like other values.

public void Butterflies(){

Butterfly b1 = new Butterfly(100, 20);

Butterfly b2 = new Butterfly(x, 40);

this.upAndDown(b1);

this.upAndDown(b2);

}

public void upAndDown(Butterfly b){

b.move(10);

b.move(15);

b.land();

b.move(15);

b.move(20);

b.land();

}

b1

Butterfly

b2

Butterfly

b

Butterfly

© Mohammad Nekooei and Peter Andreae

COMP102: 118

Designing with methods that call other methods

• Design a Java program to measure reaction time of users responding to true and

false "facts".

• Ask the user about a fact: "Is it true that the BE is a 4 Year degree?"

• Measure the time they took

• Print out how much time.

• Need a class

• what name?

• Need a method

• what name?

• what parameters?

• what actions?

© Mohammad Nekooei and Peter Andreae

COMP102: 119

ReactionTimeMeasurer

/** Measures reaction times for responding to true-false statements */

public class ReactionTimeMeasurer {

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

// find out the current time and remember it

// ask the question and wait for answer

// find out (and remember) the current time

// print the difference between the two times

}

}

Write the method body in comments first,

(to plan the method without worrying about syntax)

Work out what information needs to be stored (ie, variables)

© Mohammad Nekooei and Peter Andreae

COMP102: 120

ReactionTimeMeasurer

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that the sky is blue?");

long endTime = System.currentTimeMillis();

UI.printf("Reaction time = %d milliseconds \n", (endTime - startTime));

}

}

Just asking one question is not enough for an experiment.

 ➔ need to ask a sequence of questions.

Returns a very big integer

 ⇒ long

(milliseconds since 1/1/1970

© Mohammad Nekooei and Peter Andreae

COMP102: 121

Multiple questions, the bad way

/** Measure and report the time taken to react to a question */

public void measureReactionTime(){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that John Quay was the Prime Minister");

long endTime = System.currentTimeMillis();
UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that 6 x 4 = 23");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that summer is warmer than winter");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();
UI.askString("Is it true that Wellington’s population > 1,000,000");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

Lots of repetition.

But not exact repetition.

How can we improve it?

© Mohammad Nekooei and Peter Andreae

COMP102: 122

Good design with methods

• Key design principle:

• Wrap up repeated sections of code into a separate method,

• Call the method several times:

public void measureReactionTime () {

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

}

public void measureQuestion (……) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " ………);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

We need to

parameterise

the method

"John Quay was the Prime Minister");

"6 x 4 = 23");

“Summer is warmer than winter");

"Wellington’s population > 1,000,000 ");

String fact

+ fact

© Mohammad Nekooei and Peter Andreae

COMP102: 123

Improving ReactionTimeMeasurer (1)

public void measureReactionTime() {

this.measureQuestion("John Quay was the Prime Minister");

this.measureQuestion(“6 x 4 = 23");

this.measureQuestion(“Summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000 ");

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that" + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

© Mohammad Nekooei and Peter Andreae

COMP102: 126

• What happens if we call the method on the object RTM1:

RTM1 . measureTime();

public void measureReactionTime(){

this.measureQuestion("John Quay was the Prime Minister");

this.measureQuestion("6 x 4 = 23");

this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population >1,000,000");

The object the method was called on is copied to "this" place

Understanding ReactionTimeMeasurer

this:

 RTM-1

© Mohammad Nekooei and Peter Andreae

COMP102: 127

Understanding method calls

public void measureQuestion(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

✓

✓

✓

this:

 RTM-1"John Quay is…"

✓

© Mohammad Nekooei and Peter Andreae

COMP102: 128

public void measureReactionTime(){

this.measureQuestion("John Quay was the Prime Minister");

this.measureQuestion("6 x 4 = 23");

this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000");

Understanding ReactionTimeMeasurer

✓

this:

 RTM-1

© Mohammad Nekooei and Peter Andreae

COMP102: 129

New measureQuestion worksheet:

public void measureQuestion(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

Each time you call a method,

it makes a fresh copy of the worksheet!

" 6 x 9 = 54 "

Understanding ReactionTimeMeasurer

✓

✓

✓

✓

this:

 RTM-1

© Mohammad Nekooei and Peter Andreae

COMP102: 130

public void MeasureReactionTime(){

this. measureQuestion("John Quay was the Prime Minister");

this. measureQuestion("6 x 4 = 23");

this. measureQuestion(“summer is warmer than Winter");

this. measureQuestion(" Wellington’s population > 1,000,000");

Understanding ReactionTimeMeasurer

✓

✓

this:

 RTM-1

© Mohammad Nekooei and Peter Andreae

COMP102: 131

ReactionTimeMeasurer Problem

• A good experiment would measure the average time over a series of trials

• Our program measures and reports for each trial.

• Need to add up all the times, and compute average:

• problem:

• measureReactionTime needs to add up the times

• measureQuestion actually measures the time, but prints it out.

• How do we get the time back from measureQuestion to measureReactionTime?

• We need to make measureQuestion return the time value to measureReactionTime.

© Mohammad Nekooei and Peter Andreae

COMP102: 132

Methods that return values

• Some methods just have "effects":

UI.println("Hello there!");

UI.printf("%4.2f miles is the same as %4.2f km\n", mile, km);

UI.fillRect(100, 100, wd, ht);

UI.sleep(1000);

• Some methods just return a value:

long now = System.currentTimeMillis();

double distance = 20 * Math.random();

double ans = Math.pow(3.5, 17.3);

• Some methods do both:

double height = UI.askDouble("How tall are you");

Color col =JColorChooser.showDialog(UI.getFrame(), "paintbrush", Color.red);

© Mohammad Nekooei and Peter Andreae

COMP102: 133

Defining methods to return values

Improving ReactionTimeMeasurer:

public void measureReactionTime() {

long time = 0;

time = time + this.measureQuestion("John Quay was the Prime Minister");

time = time + this.measureQuestion("11 x 13 = 143");

time = time + this.measureQuestion(“Summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000 ");

UI.printf("Average reaction time = %d milliseconds\n", (time / 4));

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

……

}

long

Specifies the type of value returned.

void means "no value returned"

make measureQuestion return a value

instead of just printing it out.

.

© Mohammad Nekooei and Peter Andreae

COMP102: 134

Syntax: Method Definitions (v3: return type)

/** Measure time taken to answer a question*/

 public long measureQuestion (String fact){

long startTime = System.currentTimeMillis();

 :

〈Comment〉 〈Header〉 〈Body〉{ }

public 〈type〉 〈parameters〉()〈name〉

〈type〉

,

〈name〉

© Mohammad Nekooei and Peter Andreae

COMP102: 135

Defining methods to return values

If you declare that a method returns a value,

then the method body must return one!

public long measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

String ans = UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds\n" , (endTime - startTime));

}

return (endTime - startTime) ;

New kind of statement

 Means: exit the method and return the value

 The value must be of the right type

© Mohammad Nekooei and Peter Andreae

COMP102: 136

• What happens if we call the method:

RTM-1 . measureReactionTime();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay was the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(“Wellington’s pop > 1,000,000");

Returning values.

0

this:

 RTM-1

✓

© Mohammad Nekooei and Peter Andreae

COMP102: 137

Returning values

return value:

public long measureQn(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

return (endTime - startTime) ;

}

"John Quay was"

" "

this:

 RTM-1

© Mohammad Nekooei and Peter Andreae

COMP102: 138

• What happens if we call the method:

RTM-1 . askQuestions();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay was the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000");

Returning values.

0

✓

this:

 RTM-1

✓

© Mohammad Nekooei and Peter Andreae

COMP102: 139

More about Return

• If a method has a return type, it must have a return statement that returns a value

• It must return a value for every possible path

 may need several return statements:

public String fullDayName(String str){

str = str.toLowerCase();

if (str.startsWith("m")){

return "Monday";

}

else if (str.startsWith("tu")){

return "Tuesday";

}

else if (str.startsWith("w")){

return "Wednesday";

}….

© Mohammad Nekooei and Peter Andreae

COMP102: 140

More about Return

• return does two things:

• specifies the value that will be returned to the calling method

• exits the current method, skipping over all remaining statements.

• Methods with a void return type:

• Can't return a value

• Can still have a return statement (return;) with no value.

 exit method at this point.

public void drawLollipop(double x, double y, double size, double length,){

if (size < 2 || length < size/2){ // invalid parameters

return;

}

// draw the lollipop

UI.setColor(Color.red);

UI.fillRect(x-size/2; y-size/2, size, size);

 :

© Mohammad Nekooei and Peter Andreae

COMP102: 141

Aside: Random numbers

• Math.random() computes and returns a random double
• between 0.0 and 1.0

• To get a random number between min and max:

• min + random number * (max-min)

(50.0 + Math.random() * 70.0)

gives a value between 50.0 and 120.0

• This is an expression:

• can assign it to a variable to remember it

• can use it inside a larger expression

• can pass it directly to a method

	new objects
	Slide 107: Object oriented programming
	Slide 108: Objects
	Slide 109: Examples of objects
	Slide 110: Using objects
	Slide 111: Creating Objects
	Slide 112: Creating Objects: new
	Slide 113: Reading Documentation
	Slide 114: Example: Butterfly Grove program
	Slide 115: Objects are values too:

	Method parameters and return
	Slide 118: Designing with methods that call other methods
	Slide 119: ReactionTimeMeasurer
	Slide 120: ReactionTimeMeasurer
	Slide 121: Multiple questions, the bad way
	Slide 122: Good design with methods
	Slide 123: Improving ReactionTimeMeasurer (1)
	Slide 126: Understanding ReactionTimeMeasurer
	Slide 127: Understanding method calls
	Slide 128: Understanding ReactionTimeMeasurer
	Slide 129: Understanding ReactionTimeMeasurer
	Slide 130: Understanding ReactionTimeMeasurer
	Slide 131: ReactionTimeMeasurer Problem
	Slide 132: Methods that return values
	Slide 133: Defining methods to return values
	Slide 134: Syntax: Method Definitions (v3: return type)
	Slide 135: Defining methods to return values
	Slide 136: Returning values.
	Slide 137: Returning values
	Slide 138: Returning values.
	Slide 139: More about Return
	Slide 140: More about Return
	Slide 141: Aside: Random numbers

