
© Mohammad Nekooei and Peter Andreae

COMP102: 155

Numeric For statement

Alternative form of the for statement.

Most commonly used to step through a sequence of numbers

Can be used more generally than this.

More tricky to get right than the for each version.

Four components

• a variable and its initial value.

• a condition when to keep going / stop

• how to increment the variable each time

• actions to perform for each time

// print each number from 1 to 100:

for (int num =1 ; num <= 100 ; num = num + 1) {

UI.println(num);

}

int

num

© Mohammad Nekooei and Peter Andreae

COMP102: 156

For statement ("Numeric" version)

for (int num = 0 ; num < 1000 ; num++) {

UI.println(num);

}

• Meaning:
• initialise the variable

• repeat, as long as the condition is true:

• do the actions

• do the increment

for ()

action statements

{

}

type var ; condition ; increment statement= expr

shorthand for num = num + 1

© Mohammad Nekooei and Peter Andreae

COMP102: 157

Using Numeric For: #1

• Print a table of numbers and their squares:

public void printTable(int max){

UI.println("Table of integers and their squares");

for (int num = 1; num <= max; num = num + 1) {

 UI.printf(“ %3d %6d \n”, num, (num*num));

}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 158

Using Numeric For: #2

Doesn't have to increment by 1 each time:

/**

 * Print each even number between start and end (inclusive)

 */

public void printEvenNumbers(int start, int end){

if (start%2==1) { // make sure start is even

start = start + 1;

}

for (int num = start; num <= end; num = num + 2) {

UI.println(num);

}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 159

Using Numeric For: #3

• Draw a row of squares:

public static final double SIZE = 20;

 ⋮

/** Draws count squares in a horizontal row, starting at (left,top) */

public void drawRowOfSquares (double left, double top, int count){

for (int i = 0; i < count; i++) {

double x = left + i * SIZE;

UI.drawRect(x, top, SIZE, SIZE);

}

} Counting from 0 is often easier,

especially for drawing stuff!

i++

is shorthand for

 i = i + 1

© Mohammad Nekooei and Peter Andreae

COMP102: 160

Using Numeric For: #4

• Draw a row of squares:

public static final double SIZE = 20;

 ⋮

/** Draws count squares in a horizontal row, starting at (left,top) */

public void drawRowOfSquares (double left, double top, int count){

double right = left+count*SIZE;

for (double x = left; x < right; x = x + SIZE) {

UI.drawRect(x, top, SIZE, SIZE);

}

}

Note: this for statement is

stepping through a sequence

of doubles, rather than ints.

© Mohammad Nekooei and Peter Andreae

COMP102: 161

Using Numeric For: #5

• For doesn't have to step up:

public void countDown(int start){

UI.setFontSize(100);

for (int count = start; count >= 1; count = count – 1) {

UI.clearGraphics();

UI.drawString(""+count, 200, 300);

UI.sleep(500);

}

UI.clearGraphics();

UI.setColor(Color.red);

UI.drawString(“GO”, 200, 300);

}

could use shorthand:

 count - -

© Mohammad Nekooei and Peter Andreae

COMP102: 162

Count from 0 or 1?

Counted for loop: Can count from 0 or from 1

for (int n = 0; n < target; n++) { OR for (int n = 1; n <=max; n++) {

do actions 〉 do actions 〉
} }

• If counting from 0,

• n is the number of iterations that have been completed

• Loop as long as n is less than target:

• Good for drawing

• Good for dealing with lists and arrays.

• If counting from 1,

• n is the iteration it is about to do

• Loop as long as n is less than or equal to target:

Off-by-one errors are common

when you mix these two up.

© Mohammad Nekooei and Peter Andreae

COMP102: 163

Nested for loops

Can have loops inside loops:

eg: Draw a grid of circles

public void drawCircles(int rows, int cols, int diam) {

for (int row = 0; row < rows; row++) {

double y = TOP +row*diam;

for (int col = 0; col < cols; col++) {

double x = LEFT + col*diam;

UI.fillOval(x, y, diam, diam);

}

}

}
Inside loop:

 do each column within the

 current row

Outside loop:

 do each row

© Mohammad Nekooei and Peter Andreae

COMP102: 164

Nested for loops

Nested loops can be row first, or column first:

eg Draw a grid of circles (by column)

public void drawCircles(int rows, int cols, int diam) {

for (int col = 0; col < cols; col++) {

double x = LEFT + col*diam;

for (int row = 0; row < rows; row++) {

double y = TOP +row*diam;

UI.fillOval(x, y, diam, diam);

}

}

} Inside loop:

 do each row within the

 current column

Outside loop:

 do each column

© Mohammad Nekooei and Peter Andreae

COMP102: 165

Designing nested loops with numbers

2D structures, eg table of rows and columns:

• Can do rows in the outside loop and columns in the inside loop, or vice versa

for (int row=0;row<rows; row++) { for (int col=0; col<cols; col++) {

for (int col=0; col<cols; col++) { for (int row=0;row<rows row++) {

do actions for row, col 〉 do actions for row, col 〉

} }

} }

© Mohammad Nekooei and Peter Andreae

COMP102: 166

Today

• Repetition/Iteration

• repeating something as long as a condition stays true ("while" loop)

• Test:

• 28 October - Lecture Time (Mingli 5-301)

© Mohammad Nekooei and Peter Andreae

COMP102: 167

While statements: repeating with a condition

• For statements: repetition over a list of values or a sequence of numbers.

• While statements : general repetition, subject to a condition.

while (condition-to-do-it-again) {

actions to perform each time round

 }

while (true) {

UI.println("this repeats forever!");

}

• Similar to for, but NOT THE SAME!

• same condition and actions;

• no built-in initialisation and increment.

• Appropriate if you don’t know how many times it will repeat

Similar structure to

the if statement

© Mohammad Nekooei and Peter Andreae

COMP102: 168

While statement

• Meaning:

Repeatedly

• If the condition is still true, do the actions another time

• If the condition is false, stop and go on to the next statement.

• Note: don’t do actions at all if the condition is initially false

• Similar to if, but NOT THE SAME!

• keeps repeating the actions,

• as long as the condition is still true each time round

• no else — just skips to next statement when condition is false

while (condition)

action

{

}

© Mohammad Nekooei and Peter Andreae

COMP102: 169

While is a rearrangement of for

• Print a table of numbers and their squares:

public void printTable(int max){

int num = 1;

while (num <= max) {

 UI.printf(“ %3d %6d \n”, num, (num*num));

 num = num + 1;

}

}

• Repetition with while generally involves

• initialisation: get ready for the loop Put before while loop

• test: whether to repeat

• body: what to repeat

• “increment”: get ready for the next iteration Put at end of actions.

Initialise

Body

Test

Increment

© Mohammad Nekooei and Peter Andreae

COMP102: 170

General while loops

/** Practice times-tables until got 5 answers correct in a row */

public void playArithmeticGame (){

int score = 0;

while (score < 5) {

// ask an arithmetic question

int a = this.randomInteger(10);

int b = this.randomInteger(10);

int ans = UI.askInteger("What is " + a + " times " + b + "?");

if (ans == a * b) {

score = score +1;
}

else {

score = 0;
}

}

UI.println("You got 5 right answers in a row");

}

/** return random int between 1 and max (inclusive) */

public int randomInteger(int max) {

 return (int) (Math.random() * max) + 1;

}

© Mohammad Nekooei and Peter Andreae

COMP102: 171

General while loops

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

boolean correct = false;

while (! correct) {

int ans = UI.askInteger(question);

if (ans == a * b) {

correct = true;

UI.println("You got it right!");
}
else {

UI.println("sorry, try again");
}

}

}

This seems unnecessarily complex!!

© Mohammad Nekooei and Peter Andreae

COMP102: 172

Loops with the test "in the middle"

If the condition for exiting the loop depends on the actions, need to exit in the middle!

Common with loops asking for user input.

• break allows you to exit a loop (while, or for)

• Must be inside a loop

• Ignores any if 's

• Does not exit the method (return does that)

while (true) {

actions to set up for the test

if (exit-test) {

break;

}

additional actions

}

© Mohammad Nekooei and Peter Andreae

COMP102: 173

General while loops with break

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

while (true) {

int ans = UI.askInteger(question);

if (ans == a * b) {

UI.println("You got it right!");

break;

}

UI.println("sorry, try again");

}

}

• Only use break when the exit is not at the beginning of the loop.

Setting up for test

actions if test failed.

Test and break

© Mohammad Nekooei and Peter Andreae

COMP102: 174

Duplicate to do

action before the

first test

While loops to get valid input

/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

String addr = UI.askString(“Enter email address”);

while (! this.validEmailAddress(addr)){

UI.println(“Email address must have a single @ with characters before and afterwards”);

addr = UI.askString(“Enter email address”);

}

return addr;

}

/** Check that an email address contains one @ in the middle and no spaces */

public boolean validEmailAddress (String addr){

int idx = addr.indexOf(“@”);

return (idx>0 && idx!=addr.length()-1&& addr.indexOf(“@”, idx+1)==-1 && !addr.contains(“ ”));

}

© Mohammad Nekooei and Peter Andreae

COMP102: 175

While loops to get valid input

/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

while (true) {

String addr = UI.askString(“Enter email address”);

if (this.validEmailAddress(addr)) {

break;

}

UI.println(“Email address must have a single @ with characters before and afterwards”);

}

return addr;

}

Actions before test

Actions after test

© Mohammad Nekooei and Peter Andreae

COMP102: 176

/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

while (true) {

String addr = UI.askString(“Enter email address”);

if (this.validEmailAddress(addr)) {

return addr;

}

UI.println(“Email address must have a single @ with characters before and afterwards”);

}

}

• Don't need break if there is nothing to do after the loop except return:
• just return from the middle of the loop!

While loops to get valid input

Actions before test

Actions after test

© Mohammad Nekooei and Peter Andreae

COMP102: 177

More loops with user input

• Make user guess a magic word:

public void playGuessingGame(String magicWord){

UI.println("Guess the magic word:");

while (true) {

String guess = UI.askString("your guess: ");

if (guess.equalsIgnoreCase(magicWord)) {

UI.println("You guessed it!");

break;

}

UI.println("No, that wasn't right. Try again!");

}

}

Setting up for test

Additional actions

Test and break

© Mohammad Nekooei and Peter Andreae

COMP102: 178

While statement

• Meaning:

• Repeatedly do the actions while the condition is true

• If the condition is false, stop and go on to the next statement.

• Similar to the “regular” while, but NOT THE SAME!

• do actions once if the condition is initially false

while (condition)

actions{ }do

© Mohammad Nekooei and Peter Andreae

COMP102: 179

do-while and while loops

• A do-while loop can be translated into a while loop:

int i = 0;

while (i < 10) {
 UI.println(“I can count to “ + i + “!”);
 i++;

}

String sentence = UI.askString(“Next word: ”);
while (! sentence.endsWith(“.”)) {

String word = UI.askString(“Next word: ”);
sentence = sentence + word;

}

initialisation

while (condition) {
 body

 change
}

int i = 0;

do {
 UI.println(“I can count to “ + i + “!”);
 i++;

} while (i < 10)

String sentence = “”;
do {

String word = UI.askString(“Next word: ”);
sentence = sentence + word;

} while (! sentence.endsWith(“.”))

initialisation

do {
 body

 change
} while (condition)

© Mohammad Nekooei and Peter Andreae

COMP102: 180

Designing loops

Is the number of steps determined at the beginning?

int i = 0; int i = 1;

while (i < number) { while (i <= number) {

do actions 〉 do actions 〉

i = i + 1; i++;

} }

• Note, can count from 0 or from 1!

Otherwise

〈initialise 〉

while (〈condition-to-do it again 〉) {

〈body 〉

〈increment 〉
}

© Mohammad Nekooei and Peter Andreae

COMP102: 181

Designing loops

• Write out the steps for a couple of iterations

• including the tests to determine when to quit/keep going

• Identify the section that is repeated

• preferably starting with the test

• Wrap it with a while () { }

• Identify the condition for repeating (and initial state).

© Mohammad Nekooei and Peter Andreae

COMP102: 182

Designing loops

• Write out the steps for a couple of iterations

• including the tests to determine when to quit/keep going

• Identify the section that is repeated

• preferably starting with the test

• Wrap it with a while () { }

• Identify the condition for repeating (and initial state).

© Mohammad Nekooei and Peter Andreae

COMP102: 183

More loops with user input – magic word

• Make user guess a magic word:

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop

© Mohammad Nekooei and Peter Andreae

COMP102: 184

More loops with user input – magic word

• Make user guess a magic word:

• prompt user for a word

• test if it is “pumpkin”

• if not, try again

UI.print(“Please enter the magic word:”);

String answer = UI.askString(“your guess: ”);

if (answer.equalsIgnoreCase(“pumpkin”)) { …

 if not, go back where to??

at end

UI.println(“You finally guessed it!”);

© Mohammad Nekooei and Peter Andreae

COMP102: 185

Magic word 1: break to exit

• Put “while” at the beginning of the repeated section

• Use the “infinite loop” and an if () { break; }

while (true) {

UI.print(“Please enter the magic word:”);

String answer = UI.askString(“your guess: ”);

if (answer.equalsIgnoreCase(“pumpkin”)) {

break;

}

UI.print(“No!”);

}

UI.println(“You finally guessed it!”);

© Mohammad Nekooei and Peter Andreae

COMP102: 186

Magic word 2: unfold

• Put “while” where the test is,

• Repeat the “set up” in the body.

UI.print(“Please enter the magic word:”);

String answer = UI.askString(“your guess: ”);

while (! answer.equalsIgnoreCase(“pumpkin”)) {

UI.println(“No!”);

answer = UI.askString(“your guess: ”);

}

UI.println(“You finally guessed it!”);

© Mohammad Nekooei and Peter Andreae

COMP102: 187

Magic word 3: clever initialisation

• Set up a “dummy” case first.

UI.print(“Please enter the magic word:”);

String answer = “not pumpkin!”;

while (! answer.equalsIgnoreCase(“pumpkin”)) {

answer = UI.askString(“your guess: ”);

}

UI.println(“You finally guessed it!”);

© Mohammad Nekooei and Peter Andreae

COMP102: 188

Testing your program

A) Need to try out your program on sample input while removing the "easy" bugs.

• Can be a pain if need lots of input (eg TemperatureAnalyser)

• UI window has a menu item – "set input" – to get input from a text file instead of user typing it.

 don't have to type lots of data each time

• Create the text file, eg in Notepad

• Select file using menu before the program has started asking for input.

• File can contain multiple sequences of data.

• B) Need to test your program on a range of inputs

• Easy, "ordinary", inputs

• Boundary cases — values that are only just in range, or just out of range

 Need to check that your if conditions are right

• Invalid data—does your program handle invalid input correctly?

Creating test cases involves creativity – have to try to come up with ways to break your program.

	Numeric For
	Slide 155: Numeric For statement
	Slide 156: For statement ("Numeric" version)
	Slide 157: Using Numeric For: #1
	Slide 158: Using Numeric For: #2
	Slide 159: Using Numeric For: #3
	Slide 160: Using Numeric For: #4
	Slide 161: Using Numeric For: #5
	Slide 162: Count from 0 or 1?
	Slide 163: Nested for loops
	Slide 164: Nested for loops
	Slide 165: Designing nested loops with numbers

	while loops
	Slide 166: Today
	Slide 167: While statements: repeating with a condition
	Slide 168: While statement
	Slide 169: While is a rearrangement of for
	Slide 170: General while loops
	Slide 171: General while loops
	Slide 172: Loops with the test "in the middle"
	Slide 173: General while loops with break
	Slide 174: While loops to get valid input
	Slide 175: While loops to get valid input
	Slide 176: While loops to get valid input
	Slide 177: More loops with user input
	Slide 178: While statement
	Slide 179: do-while and while loops
	Slide 180: Designing loops
	Slide 181: Designing loops
	Slide 182: Designing loops
	Slide 183: More loops with user input – magic word
	Slide 184: More loops with user input – magic word
	Slide 185: Magic word 1: break to exit
	Slide 186: Magic word 2: unfold
	Slide 187: Magic word 3: clever initialisation
	Slide 188: Testing your program

