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Numeric For statement

Alternative form of the for statement. 

Most commonly used to step through a sequence of numbers 

Can be used more generally than this.

More tricky to get right than the for each version.

Four components

• a variable and its initial value.

• a condition when to keep going  / stop

• how to increment the variable each time

• actions to perform for each time

// print each number from 1 to 100:

for ( int num =1  ;  num <= 100    ;   num = num + 1   ) { 

UI.println(num);

}

int

num
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For statement  ("Numeric" version)

for  (  int  num = 0 ;  num < 1000  ;   num++  )    { 

UI.println(num);

}

• Meaning:
• initialise the variable

• repeat, as long as the condition is true:

• do the actions

• do the increment

for ( )

action statements

{

}

type var ; condition ; increment statement= expr

shorthand for     num = num + 1
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Using Numeric For:  #1

• Print a table of numbers and their squares:

public void printTable(int max){

UI.println("Table of integers and their squares");

for (int num = 1;   num <= max;   num = num + 1 ) {

 UI.printf(“ %3d    %6d   \n”,  num,  (num*num));

}

}
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Using Numeric For:  #2

Doesn't have to increment by 1 each time:

/**

 * Print each even number between start and end (inclusive)

 */

public void printEvenNumbers(int start, int end ){

if (start%2==1 ) {    // make sure start is even 

start = start + 1; 

}

for ( int num = start;   num <= end;  num = num + 2 )  { 

UI.println(num);

}

}
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Using Numeric For:  #3

• Draw a row of squares:

public static final double SIZE = 20; 

 ⋮

/** Draws count squares in a horizontal row, starting at (left,top)  */ 

public void drawRowOfSquares (double left, double top, int count){

for (int i = 0;  i < count;   i++  ) {

double x = left + i * SIZE;

UI.drawRect(x, top, SIZE, SIZE);

}

} Counting from 0 is often easier,

especially for drawing stuff!

i++ 

is shorthand for 

    i = i + 1
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Using Numeric For:  #4

• Draw a row of squares:

public static final double SIZE = 20; 

 ⋮

/** Draws count squares in a horizontal row, starting at (left,top)  */ 

public void drawRowOfSquares (double left, double top, int count){

double right = left+count*SIZE;

for (double x = left;   x < right;   x = x + SIZE) {

UI.drawRect(x, top, SIZE, SIZE);

}

}

Note: this for statement is 

stepping through a sequence 

of doubles, rather than ints.
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Using Numeric For:   #5

• For doesn't have to step up:

public void countDown(int start){

UI.setFontSize(100);

for (int count = start;  count >= 1;  count = count – 1) {

UI.clearGraphics();

UI.drawString( ""+count,  200, 300 );

UI.sleep(500);

}

UI.clearGraphics();

UI.setColor(Color.red);

UI.drawString(“GO”,  200, 300);

}

could use shorthand:

    count - - 
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Count from 0 or 1?

Counted for loop:  Can count from 0 or from 1

for (int n = 0; n < target; n++) { OR for (int n = 1; n <=max;  n++) {

do actions 〉                              do actions 〉
}   }

• If counting from 0,  

• n is the number of iterations that have been completed

• Loop as long as n  is less than target:

• Good for drawing

• Good for dealing with lists and arrays. 

• If counting from 1,  

• n is the iteration it is about to do

• Loop as long as n  is less than or equal to target:

 

Off-by-one errors are common

when you mix these two up.
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Nested for loops 

Can have loops inside loops:

eg: Draw a grid of circles

public void drawCircles(int  rows,  int cols, int diam ) {

for (int row = 0;  row < rows; row++) {

double y = TOP +row*diam;

for (int col = 0;  col < cols; col++) {

double x = LEFT + col*diam;

UI.fillOval(x, y, diam, diam);

}

}

}
Inside loop:

   do each column within the

 current row

Outside loop: 

   do each row
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Nested for loops 

Nested loops can be row first, or column first:

eg Draw a grid of circles (by column)

public void drawCircles(int  rows,  int cols, int diam ) {

for (int col = 0; col < cols; col++) {

double x = LEFT + col*diam;

for (int row = 0; row < rows; row++) {

double y = TOP +row*diam;

UI.fillOval(x, y, diam, diam);

}

}

} Inside loop:

   do each row within the

 current column

Outside loop: 

   do each column
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Designing nested loops with numbers

2D structures, eg table of rows and columns:

• Can do rows in the outside loop and columns in the inside loop,   or vice versa

for (int row=0;row<rows; row++) {  for (int col=0; col<cols; col++) { 

for (int col=0; col<cols; col++ ) {  for (int row=0;row<rows row++) {

do actions for  row, col 〉   do actions for  row, col 〉

}   }

}  }
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Today

• Repetition/Iteration

• repeating something as long as a condition stays true ("while" loop)

• Test: 

• 28 October - Lecture Time (Mingli 5-301) 
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While statements:  repeating with a condition

• For statements:  repetition over a list of values or a sequence of numbers.  

• While statements : general repetition, subject to a condition.

while (condition-to-do-it-again )  { 

actions to perform each time round

 }

while ( true )  { 

UI.println("this repeats forever!");

}

• Similar to for, but NOT THE SAME!

• same condition and actions;

• no built-in initialisation and increment.

• Appropriate if you don’t know how many times it will repeat

Similar structure to 

the if statement
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While statement

• Meaning:

Repeatedly

• If the condition is still true, do the actions another time

• If the condition is false, stop and go on to the next statement.

• Note: don’t do actions at all if the condition is initially false

• Similar to if, but NOT THE SAME!

• keeps repeating the actions, 

• as long as the condition is still true each time round

• no else — just skips to next statement when condition is false

while ( condition )

action

{

}
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While is a rearrangement of for

• Print a table of numbers and their squares:

public void printTable(int max){

int num = 1;

while ( num <= max ) {

 UI.printf(“ %3d    %6d   \n”,  num,  (num*num));

 num = num + 1;

}

}

• Repetition with while generally involves

• initialisation: get ready for the loop  Put before while loop

• test: whether to repeat

• body: what to repeat

• “increment”: get ready for the next iteration Put at end of actions.

Initialise

Body

Test

Increment
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General while loops

/** Practice times-tables until got 5 answers correct in a row */

public void playArithmeticGame (){

int score = 0;

while ( score  < 5) {

// ask an arithmetic question

int a = this.randomInteger(10);

int b = this.randomInteger(10);

int ans = UI.askInteger("What is " + a + " times " + b + "?" );

if ( ans ==  a * b ) {

score = score +1;
}

else {

score = 0;
}

}

UI.println("You got 5 right answers in a row" );

}

/** return random int between 1 and max (inclusive) */

public int randomInteger(int max) {

 return  (int) (Math.random() * max ) + 1;

}
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General while loops

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

boolean correct = false;

while ( ! correct) {

int ans = UI.askInteger(question);

if ( ans ==  a * b ) {

correct = true; 

UI.println("You got it right!" );
}
else {

UI.println("sorry, try again");
}

}

}

This seems unnecessarily complex!!
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Loops with the test "in the middle"

If the condition for exiting the loop depends on the actions, need to exit in the middle!

Common with loops asking for user input. 

• break  allows you to exit a loop (while, or for)

• Must be inside a loop

• Ignores any if 's

• Does not exit the method  ( return does that ) 

while ( true ) {

actions to set up for the test 

if ( exit-test ) { 

break; 

}

additional actions

}



© Mohammad Nekooei and Peter Andreae

COMP102: 173

General while loops with break

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

while ( true ) {

int ans = UI.askInteger(question);

if ( ans ==  a * b ) {

UI.println("You got it right!" );

break;

}

UI.println("sorry, try again");

}

}

• Only use break when the exit is not at the beginning of the loop.

Setting up for test

actions if test failed.

Test and break
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Duplicate to do 

action before the 

first test

While loops to get valid input

/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

String addr = UI.askString(“Enter email address”);

while ( ! this.validEmailAddress(addr) ){

UI.println(“Email address must have a single @ with characters before and afterwards”);

addr = UI.askString(“Enter email address”);

}

return addr;

}

/** Check that an email address contains one @ in the middle and no spaces */

public boolean validEmailAddress (String addr){

int idx = addr.indexOf(“@”);

return (idx>0 && idx!=addr.length()-1&& addr.indexOf(“@”, idx+1)==-1 && !addr.contains(“ ”));

}
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While loops to get valid input

/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

while (true) {

String addr = UI.askString(“Enter email address”);

if ( this.validEmailAddress(addr) ) {

break;

}

UI.println(“Email address must have a single @ with characters before and afterwards”);

}

return addr;

}

Actions before test

Actions after test
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/** Ask for an email address and insist that it contains one @ in the middle */

public String askEmailAddress (){

while (true) {

String addr = UI.askString(“Enter email address”);

if ( this.validEmailAddress(addr) ) {

return addr;

}

UI.println(“Email address must have a single @ with characters before and afterwards”);

}

}

• Don't need break if there is nothing to do after the loop except return:  
• just return from the middle of the loop!

While loops to get valid input

Actions before test

Actions after test
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More loops with user input 

• Make user guess a magic word:

public void playGuessingGame(String magicWord){

UI.println("Guess the magic word:"); 

while (true) {

String guess = UI.askString("your guess: ");

if ( guess.equalsIgnoreCase(magicWord) ) {  

UI.println("You guessed it!");

break;

}

UI.println("No, that wasn't right. Try again!");

}

}

Setting up for test

Additional actions

Test and break
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While statement

• Meaning:

• Repeatedly do the actions while the condition is true

• If the condition is false, stop and go on to the next statement.

• Similar to the “regular” while, but NOT THE SAME!

• do actions once if the condition is initially false

while ( condition )

actions{ }do
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do-while and while loops

• A do-while loop can be translated into a while loop:

int i = 0;

while (i < 10) {
    UI.println(“I can count to “ + i + “!”);
    i++;

}

String sentence = UI.askString(“Next word: ”);
while (! sentence.endsWith(“.”) ) {

String word = UI.askString(“Next word: ”);
sentence = sentence + word;

}

initialisation 

while (condition) {
    body

    change
}

int i = 0;

do {
    UI.println(“I can count to “ + i + “!”);
    i++;

} while (i < 10) 

String sentence = “”;
do {

String word = UI.askString(“Next word: ”);
sentence = sentence + word;

} while ( ! sentence.endsWith(“.”) ) 

initialisation 

do {
    body

    change
} while (condition) 
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Designing loops

Is the number of steps determined at the beginning?

int i = 0; int i = 1;

while ( i < number) { while ( i <= number) {

do actions 〉  do actions 〉

i = i + 1;  i++;

}  }

• Note, can count from 0 or from 1!

Otherwise

〈initialise 〉

while ( 〈condition-to-do it again 〉 )  {

〈body 〉

〈increment 〉
}
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Designing loops

• Write out the steps for a couple of iterations

• including the tests to determine when to quit/keep going

• Identify the section that is repeated

• preferably starting with the  test

• Wrap it with a   while (  ) {        }

• Identify the condition for repeating (and initial state).
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Designing loops

• Write out the steps for a couple of iterations

• including the tests to determine when to quit/keep going

• Identify the section that is repeated

• preferably starting with the  test

• Wrap it with a   while (  ) {        }

• Identify the condition for repeating (and initial state).
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More loops with user input – magic word

• Make user guess a magic word:

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop

• if not

• say no!

• prompt user for a word

• test if it is “pumpkin” => stop
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More loops with user input – magic word

• Make user guess a magic word:

• prompt user for a word

• test if it is “pumpkin”

• if not, try again

UI.print(“Please enter the magic word:”); 

String answer = UI.askString(“your guess: ”);

if ( answer.equalsIgnoreCase(“pumpkin”) ) { …  

    if not, go back             where to??

at end

UI.println(“You finally guessed it!”);
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Magic word 1: break to exit

• Put “while” at the beginning of the repeated section

• Use the “infinite loop” and an   if (  )  { break; }

while ( true ) { 

UI.print(“Please enter the magic word:”);

String answer = UI.askString(“your guess: ”);

if ( answer.equalsIgnoreCase(“pumpkin”) ) {

break;

}

UI.print(“No!”); 

} 

UI.println(“You finally guessed it!”);
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Magic word 2:  unfold

• Put “while” where the test is, 

• Repeat the “set up” in the body.

UI.print(“Please enter the magic word:”); 

String answer = UI.askString(“your guess: ”);

while ( ! answer.equalsIgnoreCase(“pumpkin”) ) {

UI.println(“No!”); 

answer = UI.askString(“your guess: ”);

}

UI.println(“You finally guessed it!”);
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Magic word 3: clever initialisation

• Set up a “dummy” case first.

 

UI.print(“Please enter the magic word:”);

String answer = “not pumpkin!”;

while ( ! answer.equalsIgnoreCase(“pumpkin”) ) {

answer = UI.askString(“your guess: ”);

}

UI.println(“You finally guessed it!”);
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Testing your program

A)   Need to try out your program on sample input while removing the "easy" bugs.

• Can be a pain if need lots of input (eg TemperatureAnalyser)

• UI window has a menu item – "set input" – to get input from a text file instead of user typing it.

 don't have to type lots of data each time

• Create the text file, eg in Notepad

• Select file using menu before the program has started asking for input.

• File can contain multiple sequences of data.

• B)  Need to test your program on a range of inputs

• Easy,  "ordinary",  inputs

• Boundary cases — values that are only just in range, or just out of range

 Need to check that your if conditions are right

• Invalid data—does your program handle invalid input correctly?

Creating test cases involves creativity – have to try to come up with ways to break your program.
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