Files

COMP102: 191

* The Ul text pane window is transient:

* Typing large amounts of input into the text pane is a pain!
* |t would be nice to be able to save the output of the program easily.

Large amounts of text belong in files
How can your program read from a file and write to a file?

Writing to files is like writing to the Ul text pane!
« Use print, printin, printf methods
* But, need a PrintStream object instead of Ul

Reading from files is a bit different
* Doesn't use "ask..." methods
* Lots of different ways of reading from files
« We will just use a very simple one that reads a list of lines from a text file
* We will use Scanner objects to break up the lines into separate values.

© Mohammad Nekooei and Peter Andreae

COMP102: 192

Text with the text pane

|
red: 40
green: 60
blue: 30
all done

Ul.askint();
Ul.printIn();

My Program
int r =Ul.askint("red");
int g =Ul.askiInt("green");
int b =Ul.askint("blue");
Ul.setColor(new Color(r,g,b));

Ul.printin("all done™);

© Mohammad Nekooei and Peter Andreae

COMP102: 193

Text with Files

Reading data from a file:
« Read the file into a list of lines (Strings).
» Either

« Use the lines directly, or

« Use a Scanner object to get the values out of the lines
A real file: “mydata.txt”

List of :

My Program one line at a time . read all |

- . Stri lines 2l

int r =scan.nextInt(); eV (Strings) :

int g =scan.nextInt(); next... Scanner a\a\\ﬁ‘ o
int b =scan.nextint(); object R ——

Ul.setColor(new Color(r,g,b));

outFile.printin("all done");

© Mohammad Nekooei and Peter Andreae

COMP102: 194

Reading lines from a file:

[** Read lines from a file and print them to Ul text pane. */

publicvoid displayFile(String fileName){ (Missing bits to
handle exceptions !
try { —

List<String> allLines = Files.readAllLines(Path.of(fileName)); /

for (String line : allLines){ /
g % hat to d
Ul.printin(line); / bl]
}
} catch (IOException e) { Ul.printin("File failure: " + e); }

}

ﬁ what to do if it goes wrong]

Files.readAllLines(Path.of(....)) reads every line of the file into a List of Strings.
Almost right, but compiler complains!!!

Dealing with files may “raise exceptions”

Need a try{.................. }catch (...){ ... }

© Mohammad Nekooei and Peter Andreae

COMP102: 195

Reading lines from a file, ask user for file:

[** Read lines from a file and print them to Ul text pane. */
publicvoid displayFile(){
String fileName = UlFileChooser.open("File to open ");

try {
List<String> allLines = Files.readAllLines(Path.of(fileName));

for (String line : allLines){
Ul.printin(line);

}
} catch (IOException e) { Ul.printin("File failure: " + e); }
}
UlFileChooser.open(“title™) lets user select an existing file to read from

UlFileChooser.save("title") lets user select a new or existing file to write.

© Mohammad Nekooei and Peter Andreae

COMP102: 196

Text with Files

Reading data from a file:
* Read the file into a list of lines (Strings).
« Use a Scanner object to get the values out of the lines

Writing data to a file:
« Use a PrintStream object.

My Program
?nt r =scan.nextinti); A real file: “output.txt”
int g =scan.nextint(); _
int b =scan.nextint(); e
Ul.setColor(new Color(r,g,b)); -

PrintStream

outFile.printin("all done"); o -
objec < |

print...

[v nrt

© Mohammad Nekooei and Peter Andreae

COMP102: 197

Writing to a file:

[** Read lines from a user and print them to a file. */
public void makeFile(String filename){
ArrayList<String> lines = Ul.askStrings('Type in file contents:");

try {
PrintStream outfile = new PrintStream(filename);

for (String line : lines) {
outfile.printin(line);

}

outfile.close();

} catch (IOException e) { Ul.printin("File failure: " + e); }
}

* PrintStreams work just like printing to Ul
 Close the file when finished.
* Needatry{ ... }catch(...){....} around printing to files also.

© Mohammad Nekooei and Peter Andreae

COMP102: 198

Writing to a file, using UlFileChooser

[** Read lines from a user and print them to a file. */

publicvoid copyFile(){
ArrayList<String> lines = Ul.askStrings("Type in file contents:");
String filename = UlFileChooser.save("'Filename to save to");

try {
PrintStream outfile = new PrintStream(filename);

for (String line : lines) {
outfile.printin(line);

}

outfile.close();

} catch (IOException e) { Ul.printin("File failure: " + e); }
}

« UlFileChooser.save("....prompt....") lets the user choose a (possibly new) file.

© Mohammad Nekooei and Peter Andreae

UIFileChooser

COMP102: 199

« So far, we've specified which file to open and read or write with a String.

« How can we allow the user to choose a file?
* UIFileChooser class (part of ecs100 library, like Ul)

Method
open()

open(String title)

save()

save(String title)

What it does

Opens dialog box;
User can select an existing file to open.
Returns name of file or null if user cancelled.

Same as open(), but with specified title;

Opens dialog box;
User can select file (possibly new) to save to.

Returns name of file, or null if the user cancelled.

Same as save(), but with specified title.

Returns
String

String

String

String

© Mohammad Nekooei and Peter Andreae

COMP102: 200

Copying afile

[** Read lines from one file and print them to another file. */

publicvoid copyFile(){
String fromFile = UlFileChooser.open("File to copy");
String toFile = UIFileChooser.save("Filename to save to");
try {
List<String>lines = Files.readAllLines(Path.of(fromFile));
PrintStream outfile = new PrintStream(toFile);
for (String line : lines) {
outfile.printin(line);

}

outfile.close();
} catch (IOException e) { Ul.printin("File failure: " + e); }
}

* UlFileChooser.open("....prompt....") lets the user choose an existing file.

© Mohammad Nekooei and Peter Andreae

COMP102: 201

Doing more with data in a file:

/** Find all lines in a file containing a search word. */
publicvoid findWordInFile(){
String fleName = UlFileChooser.open("Choose file to search");
String word = Ul.askString("Word to search for");

try {
List<String> allLines = Files.readAllLines(Path.of(fleName));

int lineNumber = 1,
for (String line : allLines){
If (line.contains(word)){
Ul.printf("Found %s on line %d: %s\n", word, lineNumber, line);

}

lineNumber++:

}
} catch (IOException e) { Ul.printin("File failure: " + e); }

© Mohammad Nekooei and Peter Andreae

COMP102: 202

Doing more with data in a file:

What if the file has numbers? How do we get numbers out of the Strings?
* If a String consists of one number only:
* can use Double.parseDouble(line) or Integer.parselnt(line)

[** Returns total of numbers in a file (one number per line). */

public double totalFile(String fname){

try {
double total = O;

for (String line : Files.readAllLines(Path.of(fname))){
total += Double.parseDouble(line); //fails if not a number!!!

}

} catch (Exception e) { Ul.printin("File failure: " + e); }
return total,

© Mohammad Nekooei and Peter Andreae

COMP102: 203

Doing more with data in a file:

What if each line of the file has multiple values?

How do we get individual values out of the Strings?

fruit.txt

/4447 quince 11.45
4430 pineapple 6.82
4041 red-plum 5.99
4416 D'Anjou-pear 5.44
4011 Banana 2.99

Use a Scanner

© Mohammad Nekooei and Peter Andreae

COMP102: 204

Scanners

e Scanner: a class in Java that allows a program to read values out of a String
(or any other source of characters...)

* Gives the values one at a time

scan: | "There are 25 boxes; and 16.3 kg (average) per box." J

To get a Scanner:

« Create a new Scanner object, passing it the source:

Scanner scan= new Scanner("There are 25 boxes; and 16.3 kg (average) per box.");
Scanner sc = new Scanner(Ul.askString("Enter some text"));

String line = ...

Scanner lineSc = new Scanner(line);

© Mohammad Nekooei and Peter Andreae

COMP102: 205

Scanners

* A Scanner breaks up the source string into a sequence of
tokens, separated by spaces or tabs.

scan: "ﬁThere are 25 boxes; and 16.3 kg (average) per box." }

- Token: a word, a number, or ... any sequence of non-space characters.

« A Scanner provides the tokens, one at a time, using the .next...() methods:
scan.next() = hnext token as a string
scan.nextint() = next tokenas an int (error if next token is not an integer)
scan.nextDouble() = next tokenas a double (error if next token is not a number)

« Each call to .next...() moves the "cursor" to the end of the token.

© Mohammad Nekooei and Peter Andreae

COMP102: 206

Reading Tokens from a Scanner

* If you know how many tokens in the Scanner, you can just pull them out:

Scanner scan = new Scanner (4447 quince 11.45");
String PLU = scan.next();

String product = scan.next();

String price = scan.next();

Scanner scan = new Scanner ("This string has (exactly) 10 tokens: a-b-c-d & 9.0 #10");
for (inti=0;1<10; i++){

String tok = scan.next();

Ul.printf("Token %d : %s\n", i, tok);

}

« Tokens are Strings (whether they look like words, numbers, other...)

« Can only take them out in order

© Mohammad Nekooei and Peter Andreae

COMP102: 207

Reading from a Scanner

* If you know the number of tokens and their types, can extract them.

 Eq, If the string has an integer, a word, and a double:

Scanner scan = new Scanner (4447 quince 11.45");
Int PLU = scan.nextint();

String product = scan.next();

double price = scan.nextDouble();

Scanner scan = new Scanner ("4430 pineapple 6.82"),
double PLU = scan.nextDouble();

- Safe to read a number as a String, or an integer as a double.
* Not safe to read a non-number as a number, or a double as an int

© Mohammad Nekooei and Peter Andreae

COMP102: 208

Reading from a Scanner

* |f the number of tokens In a scanner iIs unknown,
How can you tell when to stop?

Scanner sc = new Scanner (Ul.askString("Enter a line of text"));

scﬁ "'There are 25 boxes; and 16.3 kg (average) per box." J

« Scanner lets you ask If there is another token using the .hasNext() method:

sc.hasNext() —> true or false: is there another tokenin the scanner?

« Can use a while loop with a Scanner:

while (sc.hasNext()){
String word = sc.next();

© Mohammad Nekooei and Peter Andreae

	files
	Slide 191: Files
	Slide 192: Text with the text pane
	Slide 193: Text with Files
	Slide 194: Reading lines from a file:
	Slide 195: Reading lines from a file, ask user for file:
	Slide 196: Text with Files
	Slide 197: Writing to a file:
	Slide 198: Writing to a file, using UIFileChooser
	Slide 199: UIFileChooser
	Slide 200: Copying a file
	Slide 201: Doing more with data in a file:
	Slide 202: Doing more with data in a file:

	Scanners
	Slide 203: Doing more with data in a file:
	Slide 204: Scanners
	Slide 205: Scanners
	Slide 206: Reading Tokens from a Scanner
	Slide 207: Reading from a Scanner
	Slide 208: Reading from a Scanner

