
© Mohammad Nekooei and Peter Andreae

COMP102: 191

Files

• The UI text pane window is transient:

• Typing large amounts of input into the text pane is a pain!

• It would be nice to be able to save the output of the program easily.

• Large amounts of text belong in files

• How can your program read from a file and write to a file?

• Writing to files is like writing to the UI text pane!

• Use print, println, printf methods

• But, need a PrintStream object instead of UI

• Reading from files is a bit different

• Doesn't use "ask…" methods

• Lots of different ways of reading from files

• We will just use a very simple one that reads a list of lines from a text file

• We will use Scanner objects to break up the lines into separate values.

© Mohammad Nekooei and Peter Andreae

COMP102: 192

Text with the text pane

UI Window

red: 40

green: 60

blue: 30

all done

UI.askInt();

UI.println();

My Program

 :

int r =UI.askInt("red");

int g =UI.askInt("green");

int b =UI.askInt("blue");

UI.setColor(new Color(r,g,b));

 :

UI.println("all done");

© Mohammad Nekooei and Peter Andreae

COMP102: 193

Text with Files

My Program

 :

int r =scan.nextInt();

int g =scan.nextInt();

int b =scan.nextInt();

UI.setColor(new Color(r,g,b));

 :

outFile.println("all done");

A real file: “mydata.txt”

List of

lines

(Strings)

Scanner

object

one line at a time

next….

Reading data from a file:

• Read the file into a list of lines (Strings).

• Either

• Use the lines directly, or

• Use a Scanner object to get the values out of the lines

read all

lines

© Mohammad Nekooei and Peter Andreae

COMP102: 194

Reading lines from a file:

/** Read lines from a file and print them to UI text pane. */

public void displayFile(String fileName){

try {

List<String> allLines = Files.readAllLines(Path.of(fileName));

for (String line : allLines){

UI.println(line);

}

} catch (IOException e) { UI.println("File failure: " + e); }

}

• Files.readAllLines(Path.of(….)) reads every line of the file into a List of Strings.

• Almost right, but compiler complains!!!

• Dealing with files may “raise exceptions”

• Need a try { ……………… } catch (…){ … }

Missing bits to

handle exceptions !!

what to do

what to do if it goes wrong

© Mohammad Nekooei and Peter Andreae

COMP102: 195

Reading lines from a file, ask user for file:

/** Read lines from a file and print them to UI text pane. */

public void displayFile(){

String fileName = UIFileChooser.open("File to open ");

try {

List<String> allLines = Files.readAllLines(Path.of(fileName));

for (String line : allLines){

UI.println(line);

}

} catch (IOException e) { UI.println("File failure: " + e); }

}

UIFileChooser.open("title") lets user select an existing file to read from

UIFileChooser.save("title") lets user select a new or existing file to write.

© Mohammad Nekooei and Peter Andreae

COMP102: 196

Text with Files

My Program

 :

int r =scan.nextInt();

int g =scan.nextInt();

int b =scan.nextInt();

UI.setColor(new Color(r,g,b));

 :

outFile.println("all done");

print…

PrintStream

object

Reading data from a file:

• Read the file into a list of lines (Strings).

• Use a Scanner object to get the values out of the lines

Writing data to a file:

• Use a PrintStream object.

A real file: “output.txt”

© Mohammad Nekooei and Peter Andreae

COMP102: 197

Writing to a file:

/** Read lines from a user and print them to a file. */

public void makeFile(String filename){

ArrayList<String> lines = UI.askStrings("Type in file contents:");

try {

PrintStream outfile = new PrintStream(filename);

for (String line : lines) {

outfile.println(line);
}

outfile.close();

} catch (IOException e) { UI.println("File failure: " + e); }

}

• PrintStreams work just like printing to UI

• Close the file when finished.

• Need a try { … } catch (…){….} around printing to files also.

© Mohammad Nekooei and Peter Andreae

COMP102: 198

Writing to a file, using UIFileChooser

/** Read lines from a user and print them to a file. */

public void copyFile(){

ArrayList<String> lines = UI.askStrings("Type in file contents:");

String filename = UIFileChooser.save("Filename to save to");

try {

PrintStream outfile = new PrintStream(filename);

for (String line : lines) {

outfile.println(line);
}

outfile.close();

} catch (IOException e) { UI.println("File failure: " + e); }

}

• UIFileChooser.save("….prompt….") lets the user choose a (possibly new) file.

© Mohammad Nekooei and Peter Andreae

COMP102: 199

UIFileChooser

• So far, we’ve specified which file to open and read or write with a String.

• How can we allow the user to choose a file?

• UIFileChooser class (part of ecs100 library, like UI)

Method What it does Returns

open() Opens dialog box;

User can select an existing file to open.

Returns name of file or null if user cancelled.

String

open(String title) Same as open(), but with specified title; String

save() Opens dialog box;

User can select file (possibly new) to save to.

Returns name of file, or null if the user cancelled.

String

save(String title) Same as save(), but with specified title. String

© Mohammad Nekooei and Peter Andreae

COMP102: 200

Copying a file

/** Read lines from one file and print them to another file. */

public void copyFile(){

String fromFile = UIFileChooser.open("File to copy");

String toFile = UIFileChooser.save("Filename to save to");

try {

List<String> lines = Files.readAllLines(Path.of(fromFile));

PrintStream outfile = new PrintStream(toFile);

for (String line : lines) {

outfile.println(line);
}

outfile.close();

} catch (IOException e) { UI.println("File failure: " + e); }

}

• UIFileChooser.open("….prompt….") lets the user choose an existing file.

© Mohammad Nekooei and Peter Andreae

COMP102: 201

Doing more with data in a file:

/** Find all lines in a file containing a search word. */

public void findWordInFile(){

String fileName = UIFileChooser.open("Choose file to search");

String word = UI.askString("Word to search for");

try {

List<String> allLines = Files.readAllLines(Path.of(fileName));

int lineNumber = 1;

for (String line : allLines){

if (line.contains(word)){

UI.printf("Found %s on line %d: %s\n", word, lineNumber, line);

}

lineNumber++;

}

} catch (IOException e) { UI.println("File failure: " + e); }

}

© Mohammad Nekooei and Peter Andreae

COMP102: 202

Doing more with data in a file:

What if the file has numbers? How do we get numbers out of the Strings?

• If a String consists of one number only:

• can use Double.parseDouble(line) or Integer.parseInt(line)

/** Returns total of numbers in a file (one number per line). */

public double totalFile(String fname){

try {

double total = 0;

for (String line : Files.readAllLines(Path.of(fname))){

total += Double.parseDouble(line); // fails if not a number!!!

}

} catch (Exception e) { UI.println("File failure: " + e); }

return total;

}

© Mohammad Nekooei and Peter Andreae

COMP102: 203

Doing more with data in a file:

What if each line of the file has multiple values?

How do we get individual values out of the Strings?

Use a Scanner

fruit.txt

4447 quince 11.45

4430 pineapple 6.82

4041 red-plum 5.99

4416 D'Anjou-pear 5.44

4011 Banana 2.99

© Mohammad Nekooei and Peter Andreae

COMP102: 204

Scanners

• Scanner: a class in Java that allows a program to read values out of a String

(or any other source of characters…)

• Gives the values one at a time

To get a Scanner:

• Create a new Scanner object, passing it the source:

Scanner scan = new Scanner("There are 25 boxes; and 16.3 kg (average) per box.");

Scanner sc = new Scanner(UI.askString("Enter some text"));

String line = ….

Scanner lineSc = new Scanner(line);

scan: "There are 25 boxes; and 16.3 kg (average) per box."

© Mohammad Nekooei and Peter Andreae

COMP102: 205

Scanners

• A Scanner breaks up the source string into a sequence of

tokens, separated by spaces or tabs.

• Token: a word, a number, or … any sequence of non-space characters.

• A Scanner provides the tokens, one at a time, using the .next…() methods:

scan.next()  next token as a string

scan.nextInt()  next token as an int (error if next token is not an integer)

scan.nextDouble()  next token as a double (error if next token is not a number)

• Each call to .next…() moves the "cursor" to the end of the token.

"There are 25 boxes; and 16.3 kg (average) per box."scan:

© Mohammad Nekooei and Peter Andreae

COMP102: 206

Reading Tokens from a Scanner

• If you know how many tokens in the Scanner, you can just pull them out:

Scanner scan = new Scanner ("4447 quince 11.45");

String PLU = scan.next();

String product = scan.next();

String price = scan.next();

Scanner scan = new Scanner ("This string has (exactly) 10 tokens: a-b-c-d & 9.0 #10");

for (int i = 0; i <10; i++){

String tok = scan.next();

UI.printf("Token %d : %s\n", i, tok);

}

• Tokens are Strings (whether they look like words, numbers, other…)

• Can only take them out in order

© Mohammad Nekooei and Peter Andreae

COMP102: 207

Reading from a Scanner

• If you know the number of tokens and their types, can extract them.

• Eg, if the string has an integer, a word, and a double:

Scanner scan = new Scanner ("4447 quince 11.45");

int PLU = scan.nextInt();

String product = scan.next();

double price = scan.nextDouble();

Scanner scan = new Scanner ("4430 pineapple 6.82");

double PLU = scan.nextDouble();

double product = scan.nextDouble();

int price = scan.nextInt();

• Safe to read a number as a String, or an integer as a double.

• Not safe to read a non-number as a number, or a double as an int

© Mohammad Nekooei and Peter Andreae

COMP102: 208

Reading from a Scanner

• If the number of tokens in a scanner is unknown,

How can you tell when to stop?

Scanner sc = new Scanner (UI.askString("Enter a line of text"));

• Scanner lets you ask if there is another token using the .hasNext() method:

sc.hasNext()  true or false: is there another token in the scanner?

• Can use a while loop with a Scanner:

while (sc.hasNext()){

String word = sc.next();

….

}

"There are 25 boxes; and 16.3 kg (average) per box."sc:

	files
	Slide 191: Files
	Slide 192: Text with the text pane
	Slide 193: Text with Files
	Slide 194: Reading lines from a file:
	Slide 195: Reading lines from a file, ask user for file:
	Slide 196: Text with Files
	Slide 197: Writing to a file:
	Slide 198: Writing to a file, using UIFileChooser
	Slide 199: UIFileChooser
	Slide 200: Copying a file
	Slide 201: Doing more with data in a file:
	Slide 202: Doing more with data in a file:

	Scanners
	Slide 203: Doing more with data in a file:
	Slide 204: Scanners
	Slide 205: Scanners
	Slide 206: Reading Tokens from a Scanner
	Slide 207: Reading from a Scanner
	Slide 208: Reading from a Scanner

