
© Mohammad Nekooei and Peter Andreae

COMP102: 208

Reading from a Scanner

• If the number of tokens in a scanner is unknown,

How can you tell when to stop?

Scanner sc = new Scanner (UI.askString("Enter a line of text"));

• Scanner lets you ask if there is another token using the .hasNext() method:

sc.hasNext() true or false: is there another token in the scanner?

• Can use a while loop with a Scanner:

while (sc.hasNext()){

String word = sc.next();

….

}

"There are 25 boxes; and 16.3 kg (average) per box."sc:

© Mohammad Nekooei and Peter Andreae

COMP102: 209

Reading from a Scanner

• If the types of the tokens in a Scanner can vary,

 How can you tell what type they are?

• Scanner lets you "peek" at the next token using the .hasNext…() methods:

scan.hasNextInt() true or false: is there another token AND is it an integer?

scan.hasNextDouble() true or false: is there another token AND is it a number?

Scanner sc = new Scanner (UI.askString("Enter some tokens"));

int total = 0;

while (sc.hasNext()){

if (sc.hasNextInt()){ // if the next token is an integer, read it and add to total

int num = sc.nextInt();

total = total + num;
}

else { // if next token is not an integer, read it and throw it away

sc.next();
}

}

"There are 25 boxes; and 16.3 kg (average) per box."

© Mohammad Nekooei and Peter Andreae

COMP102: 210

Reading from a Scanner

• More unknown values:

Scanner scan = new Scanner (line);

String salesperson = scan.next();

double total = 0;

while (scan.hasNextDouble()){

total = total + scan.nextDouble();
}

String month = scan.next();

int year = scan.nextInt();

"Jones 576000 893000 472500 982000 February 2020"scan:

© Mohammad Nekooei and Peter Andreae

COMP102: 211

Scanner "next" methods
Method What it does Returns

next() Read and return next token String

nextInt()

nextDouble()

Read the next token.

Return it as a number, if it is a number.

Throws an exception if it is not a number.

int

double

nextBoolean() Read the next token.

Return true if it is "true"; return false if it is "false".

Throws an exception if it is anything else.

boolean

hasNext() Returns true if there is another token boolean

hasNextInt()

hasNextDouble()

hasNextBoolean()

Returns true if there is another token AND

the next token is an int / double / Boolean

boolean

nextLine() Read characters up to the next end-of-line and return them as a string.

Reads and throws away the end-of-line character.

If the first character is an end-of-line, then it returns an empty string ("").

String

© Mohammad Nekooei and Peter Andreae

COMP102: 212

Files and Scanners

If a file has lines, each with several values in it:

• Wrap each line from the file in a Scanner, and

• Read the values from the Scanner.

List<String> allLines = Files.readAllLines(Path.of("image.pxm"));

for (String line : lines){

Scanner scan = new Scanner (line);

UI.setColor(new Color (scan.nextInt(), scan.nextInt(), scan.nextInt()));

UI.fillRect(x, y, 2,2);

x = x+2;

if (x > RIGHT) {

x = LEFT;

y = y+2;

}

}

image.pxm

25 53 201

240 2 150

100 250 0

240 220 220

….

© Mohammad Nekooei and Peter Andreae

COMP102: 213

Files and Scanners

If a file has lines, each with varying number of values in it:

• Wrap each line from the file in a Scanner, and

• Read the values from the Scanner.

List<String> allLines = Files.readAllLines(Path.of("numbers.txt"));

double max = Double.NEGATIVE_INFINITY;

for (String line : lines){

Scanner scan = new Scanner (line);

while (scan.hasNextDouble()){

double num = scan.nextDouble();

if (num > max) {

max = num;

}

}

}

numbers.txt

25 53 201 240

2 150

100 250 0 240

220 220 15

….

© Mohammad Nekooei and Peter Andreae

COMP102: 214

Files and Scanners

• If each line has fixed number of values of different types:

try {

List<String> allLines = Files.readAllLines(Path.of(“fruit.txt"));

for (String line : lines){

Scanner scan = new Scanner (line);

int PLU = scan.nextInt();

String product = scan.next();

double price = scan.nextDouble();

….. // do something with the values

}

} catch (IOException e) { UI.println(“File failure: ” + e); }

fruit.txt

4447 quince 11.45

4430 pineapple 6.82

4041 red-plum 5.99

4416 D'Anjou-pear 5.44

4011 Banana 2.99

© Mohammad Nekooei and Peter Andreae

COMP102: 215

A common simple pattern

• File with one entity per line,

described by multiple values:

List<String> lines = Files.readAllLines(Path.of(filename));

for (String line : lines){

Scanner sc = new Scanner(line);

String type = sc.next();

double cost = sc.nextDouble();

int wheels = sc.nextInt();

String colour = sc.next();

String make = sc.next()

if (wheels > 4) {

….
}

else {

…
}

}

…

Read all the values

into variables

process the values in

the variables

bicycle 1025 2 green Giant

truck 120000 18 black Isuzu

car 26495 4 red Toyota

© Mohammad Nekooei and Peter Andreae

COMP102: 216

Reading files line by line

If items have a varying number of values:

May need loop within each line:

/**Adds up sales of item on each line of a file */

public void addCounts(){

List<String> lines = Files.readAllLines(Path.of(“data.txt"));

for (String line : lines) {

Scanner sc = new Scanner(line);

int code = sc.nextInt();

String item = sc.next();

int lineTot = 0;

while (sc.hasNextInt()) {

lineTot = lineTot + sc.nextInt();
}

UI.printf("%s (%d): %d\n", item, code, lineTot);
}

}

973 biscuits 27 33 15 4 9

731 cake 3 5 2

189 fruit 54 2 83 96

446 beans 1 3 2 5 3 4 7 2 5 1

© Mohammad Nekooei and Peter Andreae

COMP102: 217

Processing values from a line

try {

List<String> lines = Files.readAllLines(Path.of(filename));

for (String line : lines){

Scanner sc = new Scanner(line);

double left = sc.nextDouble();

double top = sc.nextDouble();

double wd = sc.nextDouble();

double ht = sc.nextDouble();

String shape = sc.next();

int r = sc.nextInt();

int g = sc.nextInt();

int b = sc.nextInt();

UI.setColor(new Color (r, g, b));

if (shape.equals("Oval")){ UI.fillOval(left, top, wd, ht); }

else { UI.fillRect(left, top, wd, ht); }

}

} catch (IOException e) { UI.println(“File failure: ” + e); }

extracting all the values on the line

Do something

with all the

values

Diagram.txt

50.0 20.0 10.3 7.8 Oval 25 53 201

75.0 100.2 16.9 12.0 Rect 240 2 150

304.0 28.7 25.0 51.5 Oval 100 250 0

...

	Scanners
	Slide 208: Reading from a Scanner
	Slide 209: Reading from a Scanner
	Slide 210: Reading from a Scanner
	Slide 211: Scanner "next" methods

	Files with scanners
	Slide 212: Files and Scanners
	Slide 213: Files and Scanners
	Slide 214: Files and Scanners
	Slide 215: A common simple pattern
	Slide 216: Reading files line by line
	Slide 217: Processing values from a line

