
© Karsten Lundqvist Peter Andreae

for loops
COMP 102.

Victoria University of Wellington

© Karsten Lundqvist, Peter Andreae

COMP102: 2

“for” loops

• A for loop is another way of repeating some code a number of times:

for (int i = 0 ; i < 10; i++) {

UI.println(“I can count to “ + i + “!”);

}

for (int x = 100 ; x < 500; x = x + 50) {

UI.drawRect(x, 50, x + 20, 200);

UI.drawEllipse(x – 20, 30, 40, 40);

}

Initialisation Condition Change

© Karsten Lundqvist, Peter Andreae

COMP102: 3

for loops and while loops

• A for loop can be translated into a while loop:

for (int i = 0 ; i < 10; i++) {

UI.println(“I can count to “ + I + “!”);

}

for (int x = 100 ; x < 500; x = x + 50) {

UI.drawRect(x, 50, x + 20, 200);

UI.drawEllipse(x – 20, 30, 40, 40);

}

for (initialisation; condition; increment) {

body

}

int i = 0;

while (i < 10) {

UI.println(“I can count to “ + I + “!”);

i++;

}

int x = 100;

while (x < 500) {

UI.drawRect(x, 50, x + 20, 200);

UI.drawEllipse(x – 20, 30, 40, 40);

x = x + 50;

}

initialisation

while (condition) {

body

increment

}

© Karsten Lundqvist, Peter Andreae

COMP102: 4

For loop

• For loop puts the

• initialisation  once, before the loop body is run at all

• condition  tested each time, before loop body run

• increment  run each time, after loop body run

together, at the front of the loop

But the meaning is (almost) exactly the same as the while loop

(scope of variables in initialisation is different)

for (statement)

statement

; ;expression statement

Initialisation Condition Change

© Karsten Lundqvist, Peter Andreae

COMP102: 5

Using Numeric For: #1

• Print a table of numbers and their squares:

public void printTable(int max){

UI.println("Table of integers and their squares");

for (int num = 1; num <= max; num = num + 1) {

UI.printf(“ %3d %6d %n”, num, (num*num));

}

}

© Karsten Lundqvist, Peter Andreae

COMP102: 6

Using Numeric For: #2

Doesn't have to increment by 1 each time:

/**

* Print each even number between start and end (inclusive)

*/

public void printEvenNumbers(int start, int end){

if (start%2==1) { // make sure start is even

start = start + 1;

}

for (int num = start; num <= end; num = num + 2) {

UI.println(num);

}

}

© Karsten Lundqvist, Peter Andreae

COMP102: 7

Using Numeric For: #3

• Draw a row of squares:

/** Draws count squares in a horizontal row, starting at (left,top) */

public void drawRowOfSquares (double left, double top, double size, int count){

for (int i = 0; i < count; i++) {

double x = left + i * size;

UI.drawRect(x, top, size, size);

}

} Counting from 0 is often easier,

especially for drawing stuff!

i++

is shorthand for

i = i + 1

© Karsten Lundqvist, Peter Andreae

COMP102: 8

Count from 0 or 1?

Counted for loop: Can count from 0 or from 1

for (int n = 0; n < target; n++) { OR for (int n = 1; n <=max; n++) {

do actions 〉 do actions 〉
} }

• If counting from 0,

• n is the number of iterations that have been completed

• Loop as long as n is less than target:

• Good for drawing

• Good for dealing with lists and arrays.

• If counting from 1,

• n is the iteration it is about to do

• Loop as long as n is less than or equal to target:

Off-by-one errors are common

when you mix these two up.

© Karsten Lundqvist, Peter Andreae

COMP102: 9

Using Numeric For: #4

• Draw a row of squares:

/** Draws count squares in a horizontal row, starting at (left,top) */

public void drawRowOfSquares (double left, double top, double size, int count){

double right = left+count*SIZE;

for (double x = left; x < right; x = x + SIZE) {

UI.drawRect(x, top, SIZE, SIZE);

}

}

Note: this for statement is

stepping through a sequence

of doubles, rather than ints.

