
© Mohammad Nekooei and Peter Andreae

COMP102: 1
Arrays vs ArrayLists
 Some lists have a fixed number of places:

 The places may be empty

 Arrays may be sometimes more convenient than using ArrayLists 



© Mohammad Nekooei and Peter Andreae

COMP102: 2
SeedTray Program: just 12 flowers
 

seedtray:        

1 2 3 4 5 6 7 8 9 10 110

  length:    12 

null

from http://bifurcatedcarrots.eu/wp-content/ 
uploads/2010/04/tps_seedlings.jpg



© Mohammad Nekooei and Peter Andreae

COMP102: 3

 An array is an object with a fixed number of places
 Length determined when array is created
 All elements are of the same type
 Can have arrays of int, double, boolean
 Special syntax, no methods

 Each element specified by its index   (an int expression) 
seedTray[ 4 ]     ← the element in seedTray specified by index 4
seedTray[ n-3 ] 

 Counting from 0, just like ArrayLists!

 Array knows its length:     seedtray.length

Arrays

1 2 3 4 5 6 7 8 9 10 110

  length:    12 

seedTray:        

Confusion:
names.size()   ←  ArrayList
name.length() ←  String
tray.length       ←  Array



© Mohammad Nekooei and Peter Andreae

COMP102: 4
Declaring and Creating Arrays
 Declare a variable to hold an array object by putting [ ] after the type of the 

elements:
Flower[ ]  seedtray;
String[ ] keywords;
private double[ ] marks;

 Create an array object with  new and the length of the array in square brackets:
new Flower[12];
new String[50];
new double[200];

 As usual, can combine declaration and initialisation:
 String [ ] keywords = new String [50]; 

What does the new array contain?

Creates a place that can hold an array
Doesn’t create the array itself

Creates an array object,    but nothing in it

NO ROUND BRACKETS !!!

Can have an array of double or int  (unlike ArrayLists)



© Mohammad Nekooei and Peter Andreae

COMP102: 5
Initial values in a new array

Flower[ ]  seedtray =  new Flower[12];   

           Arrays of objects initialised with null  (the “no object here” value)

double[ ]  marks =  new double[200];   

            Arrays of numbers initialised to 0.

1 2 3 4 5 6 7 8 9 10 110

  length:    12 

1 2 3 4 5 6 7 8 1990

length:   200

0 0 0 0 0 0 0 0 0. . .

null null null null null null null null null null null

0

nullseedtray:        

marks:        



© Mohammad Nekooei and Peter Andreae

COMP102: 6
SeedTray   Program

public class SeedTray {

private  Flower[ ] seedtray = new  Flower[12];

1 2 3 4 5 6 7 8 9 10 110

  length:    12 

seedtray:        
null null null null null null null null null null null null

No ‘Array’ in declaration!



© Mohammad Nekooei and Peter Andreae

COMP102: 7
Using an array
 Can act on the whole array (like ArrayList)

 to pass to a method
 to assign to another variable

:
this.processFlowers(seedtray);

int maxNum = this.findMax(numbers);

int [ ] windowSizes  = numbers;

 Note, passing as argument and assignment do not copy the array!
(just the reference/ID of the object)

 Just the same as with ArrayList.

numbers:       

length:

public int findMax(int[] nums){
    …



© Mohammad Nekooei and Peter Andreae

COMP102: 8

1 2 3 4 5 6 7 80

Using an Array
 Use [ .. ] to refer to an individual place in the array

 to access the value in that place
 to put a value in that place (using assignment:  = )

double [ ] marks = new double [200];

     int n=4;                
   :

marks[5] = 45.6;  
marks[6] = ( marks[5] + marks[7] ) / 2;
marks[n-1] = 80.0;
marks[n] = marks[n-1];
if (marks[ i ] == marks[ i+1 ]) {…

199
  200length

0.0 0.0 0.0 80.0

Index can be any int valued expression

80.0 45.6 0.0. . .0.0 0.00.0 0.0 22.80.00.0

Not  get() and set()



© Mohammad Nekooei and Peter Andreae

COMP102: 9
SeedTray Program
public class  SeedTray{

private  Flower[ ] seedtray = new  Flower[12];

:

public void replant(){
for (int i = 0; i < this.seedtray.length;  i++) {

this.seedtray[ i ] = new  Flower(70+i*50, 400); 
}

}
public  void growAll(){                                public  void growAll(){

for (int i = 0; i < this.seedtray.length; i++) { for (Flower flower : this.seedtray){
this.seedtray[ i ].grow();                      flower.grow();

} }
}                                                                       }

1 2 3 4 5 6 7 8 9 10 110
  length:12 

seedtray:        

For each loop works on 
arrays, just like ArrayLists



© Mohammad Nekooei and Peter Andreae

COMP102: 10
Arrays of Objects can contain null

public void pick(int index){
this.seedtray[ index ] = null;

}

If the array may have null, must check items
before acting on them

public  void growAll(){                                public  void growAll(){
for (int i = 0; i < this.seedtray.length; i++) { for (Flower flower : this.seedtray){

if (this.seedtray[ i ] != null){                    if (flower != null){
this.seedtray[ i ].grow();            flower.grow();

}                                                           }
}                                                                  }

}                                                                       }

1 2 3 4 5 6 7 8 9 10 110
  length:12 

seedtray:        



© Mohammad Nekooei and Peter Andreae

COMP102: 11
Initialising the contents of an array
 Can specify the initial values (and size) of an array by listing the values in  

{.. , .. , ..} :
String [ ] names = new String [ ] { “Sharon”, “Pondy”, “Monique” , “Zarinah”  };

 

int [ ] dimensions = new int [ ] { 20, 45, 8 };

1 2 30

“Pondy” “Monique” “Zarinah”“Sharon”

  length:     4  

1 20

length:     3  

45 820

names:        

dimensions:        

Can’t do this 
with ArrayLists!



© Mohammad Nekooei and Peter Andreae

COMP102: 12
Arrays vs ArrayList
 Use an array if 

 it will never change size, and 
 you know how big it will need to be, at the point you need to create it.
 speed is important to you.

 Use an ArrayList if 
 the size will change, or 
 you don’t know how big it will need to be.

 Arrays have convenient syntax   [ ]
 ArrayLists have convenient methods.



© Mohammad Nekooei and Peter Andreae

COMP102: 13
Comparing arrays.
 Be careful when comparing arrays   (as with all objects)

int[ ] a = new int[ ]{ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47};
int[ ] b = new int[ ]{ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47};
int[ ] c = b;
 if (a == b) ..   ??  no
 if (b == c) ..    ??  yes
 if (a.equals(b) ) ..   ??  no
 if  (Arrays.equals(a, b) ) ..   ??  yes
 if  (this.myIntArrayEquals(a, b) ) ..   ??  yes

public boolean myIntArrayEquals(int[ ] a, int[ ] b) {
if (a==null && b==null ) { return true; }
if (a==null || b==null ) { return false; }
if ((a.length != b.length ) { return false; }
for (int i = 0; i < a.length; i++) { if ( a[i] != b[i] ) { return false; } }
return true;

}


