
© Mohammad Nekooei and Peter Andreae

COMP102: 1Problem: Button remembers the object!!

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "blue");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "green");
private CartoonCharacter selectedCC = cc1;

public PuppetMaster(){
UI.addButton("Jan", this::doJan);
UI.addButton("Smile", this.selectedCC::smile);
UI.addButton("Frown", this::doFrown);
:
}
public void doJan(){
this.selectedCC = this.cc2;
}
public void doSmile(){
this.selectedCC.smile();
}
public void doFrown(){

Doesn't work!!!

The button remembers the
object in this.cc1 at the
time the button was
created!!!!

© Mohammad Nekooei and Peter Andreae

COMP102: 2
Shorthand: “Lambda expressions”

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "blue");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "green");
private CartoonCharacter selectedCC = cc1;

public PuppetMaster(){
UI.addButton("Jan", this::doJan);
UI.addButton("Smile", () -> { this.selectedCC.smile(); });
UI.addButton("Frown", this::doFrown);

:
}
public void doJan(){

this.selectedCC = this.cc2;
}
public void doSmile(){

this.selectedCC.smile();
}
public void doFrown(){

Lambda Expression:
Anonymous methods!!
 - has parameters
 - has body
 - but no name
It is a value!!

© Mohammad Nekooei and Peter Andreae

COMP102: 3
Shorthand: “Lambda expressions”

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "green");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "blue");
private CartoonCharacter selectedCC = cc1;
private double walkDist = 20;

public PuppetMaster(){
UI.addButton("Jim", () -> { this.selectedCC = this.cc1; });
UI.addButton("Jan", () -> { this.selectedCC = this.cc2; });
UI.addButton("Smile", () -> { this.selectedCC.smile(); });
UI.addButton("Frown", () -> { this.selectedCC.frown(); });
UI.addButton("Left", () -> { this.selectedCC.lookLeft(); });
UI.addButton("Right", () -> { this.selectedCC.lookRight(); });
UI.addTextField(“Say", (String wds) -> { this.selectedCC.speak(wds); });
UI.addButton(“Walk", () -> { this.selectedCC.walk(this.walkDist); });
UI.addSlider("Distance", 1, 100, this.walkDist, (double val) -> { this.walkDist = val; });

}
}

You do NOT HAVE
TO USE THESE!!
It is always safe to
have an explicit,
named method.

© Mohammad Nekooei and Peter Andreae

COMP102: 4
More about static

/** Plot a graph of numbers from a file */
public class GraphPlotter {

// Constants for plotting the graph
public static final double GRAPH_LEFT = 50;
public static final double GRAPH_RIGHT = 550;
public static final double GRAPH_BASE = 400;

static means

 “Belongs to class as a whole,
 Not to individual objects of
 this class.”

Static double
GRAPH_LEFT

static double
GRAPH_RIGHT

static double
GRAPH_BASE

50.0 550.0 400.0

GraphPlotter Class

© Mohammad Nekooei and Peter Andreae

COMP102: 5
More about static

/** Plot a graph of numbers from a file */
public class GraphPlotter {

// Constants for plotting the graph
public static final double GRAPH_LEFT = 50;
public static final double GRAPH_RIGHT = 550;
public static final double GRAPH_BASE = 400;

static means

 “Belongs to class as a whole,
 Not to individual objects of
 this class.”

final means

 “Can't change the value
 once it has been set”

Static final double
GRAPH_LEFT

static final double
GRAPH_RIGHT

static final double
GRAPH_BASE

50.0 550.0 400.0public means
 “Can access this from
 code inside other classes”

private means
 “Can only access this from
 code in this class”

GraphPlotter Class

© Mohammad Nekooei and Peter Andreae

COMP102: 6
Static methods:
 Static methods are methods that don’t need an object:

 Methods in the Math class are static methods:
Math.min(…)
Math.max(…)
Math.random()
Math.sqrt(…)

• Methods in the UI class are static methods:
UI.drawRect(…)
UI.println(…)
UI.askInt(…)

None of these methods need an object to be created first.

Methods are called on the class itself, not on an object of that class.

© Mohammad Nekooei and Peter Andreae

COMP102: 7
Static methods: main

import ecs100.*;
import java.util.*;
import java.io.*;

public class GraphPlotter {

:
:

public static void main(String[] args){
GraphPlotter gp = new GraphPlotter();
gp.setupGUI();

}
}

main method
 - static, because belongs to the class,
 not an object of the class
 - called when the program is run directly
 from Java
 - used when running a jar file

© Mohammad Nekooei and Peter Andreae

COMP102: 8
Using main
 Normally, you need a main method to be able to run your program.
 Typically, it creates an object of the class, and calls a method on the object.
 It can do more than that.

 Note: BlueJ lets you create an object and call methods on it, using the mouse.
 simpler methods
 clearer understanding of objects and methods.
 good for testing programs
⇒ This course will use a minimal main(..) method.

© Mohammad Nekooei and Peter Andreae

COMP102: 9
Numeric data types
We have seen three types of numeric values
 int:

 integer, with no fractional part (size = 32 bits)
 eg: 75 -14532
 range: -2,147,483,648 to 2,147,483,647

 -231 to 231 -1 or
 Integer.MIN_VALUE to Integer.MAX_VALUE

 long:
 integer, but allows a bigger range (size = 64 bits)
 eg: 7111333555L -123456789123456789L (L to say it is a long, not an int)
 range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

-263 to 263 -1
Long.MIN_VALUE to Long.MAX_VALUE

© Mohammad Nekooei and Peter Andreae

COMP102: 10
Numeric data types
We have seen three types of numeric values
 double:

 number with a fractional part. (size = 64 bits)

 eg: 3.4 -193.0 -0.0063 4.8769e23 (= 4.8769 x 1023)

 range: -21024 to 21024 or roughly -1.8x10308 to 1.8x10308

 precision: (accuracy) 15 decimal digits (precisely, 52 bits)

 Special values:

 Double.MAX_VALUE: largest positive finite value 1.797693e+308

 Double.MIN_VALUE: smallest positive finite value 4.900000e-324

 Double.NEGATIVE_INFINITY: double value smaller than any other double.

 Double.POSITIVE_INFINITY: double value larger than any other double.

 Double.NaN: "not a number": the error value (eg 0.0/0.0).

© Mohammad Nekooei and Peter Andreae

COMP102: 11
More numeric data types
We have seen two "wrapper" types of numeric values

 Integer:
 wrapping up an int as an object so that it can be put into a list (for example)

 Double:
 wrapping up a double as an object so that it can be put into a list (for example)

There are wrapper types for all the other numeric types.

Java will (in most cases) convert automatically between primitive and wrapper types.

© Mohammad Nekooei and Peter Andreae

COMP102: 12
Other numeric types
Integer types:
 byte (8 bits) -128 to 127
 short (16 bits) -32,768 to 32,767

 Seldom used – just use int normally

Floating point:
 float (32 bits) smaller than doubles, less precision

 eg 1.0f -0.4f
 Seldom used, but sometimes needed for colours, eg

Color.getHSBColor(0.4f, 1.0f, 1.0f);

© Mohammad Nekooei and Peter Andreae

COMP102: 13
Types and Coercion
 Mismatching types:

double num = scan.nextInt();
int number = scan.nextDouble();  Can't do this
double squareroot = Math.sqrt(25);  but sqrt wants double?
String name = “number-” + num;

 Java will “coerce” a value to the needed type if it can: eg
 If a method needs a double and is given an int.
 If a double variable is assigned an int value.
 If “adding” any value to a String
 converting between double and Double or int and Integer (or the other Wrapper Types)

 But only if it does not lose any information:
 WON’T coerce a double to an int
 WON’T coerce a String to a number, or vice versa (except when “adding” a number to a String)
 WON’T coerce any object to a mismatching type (except when printing or “adding” to a String)

© Mohammad Nekooei and Peter Andreae

COMP102: 14
Casting
 Where it makes sense to convert a value into another type,

but some information may be lost...

 You can sometimes “cast” the value to the other type:
int number = (int) Math.sqrt(49.5);
float red = (float) Math.random();

 casting a double to an int will lose the fractional part
and may mess up the value if the number is too big!

 Not everything can be cast to everything else!
 Scanner scan = (Scanner) (new PrintStream(“data.txt”));

(〈new type〉) 〈expression〉

© Mohammad Nekooei and Peter Andreae

COMP102: 15
Dealing with lots of values
 We've used ArrayLists (and Lists)

 Road Profiler,
 WordSearcher, SalesVisualiser, FileEditor,

 ArrayLists of numbers, Strings, other objects.

 Created by methods
 UI.askNumbers(…) and UI.askStrings(…)
 Files.readAllLines(Path.of(filename)) (actually, gave us a List, not ArrayList)

 Used for each loops to step through items in an ArrayList

 What more can you do with an ArrayList?

