
© Mohammad Nekooei and Peter Andreae

COMP102: 1Problem: Button remembers the object!!

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "blue");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "green");
private CartoonCharacter selectedCC = cc1;

public PuppetMaster(){
UI.addButton("Jan", this::doJan);
UI.addButton("Smile", this.selectedCC::smile);
UI.addButton("Frown", this::doFrown);
:
}
public void doJan(){
this.selectedCC = this.cc2;
}
public void doSmile(){
this.selectedCC.smile();
}
public void doFrown(){

Doesn't work!!!

The button remembers the
object in this.cc1 at the
time the button was
created!!!!

© Mohammad Nekooei and Peter Andreae

COMP102: 2
Shorthand: “Lambda expressions”

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "blue");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "green");
private CartoonCharacter selectedCC = cc1;

public PuppetMaster(){
UI.addButton("Jan", this::doJan);
UI.addButton("Smile", () -> { this.selectedCC.smile(); });
UI.addButton("Frown", this::doFrown);

:
}
public void doJan(){

this.selectedCC = this.cc2;
}
public void doSmile(){

this.selectedCC.smile();
}
public void doFrown(){

Lambda Expression:
Anonymous methods!!
 - has parameters
 - has body
 - but no name
It is a value!!

© Mohammad Nekooei and Peter Andreae

COMP102: 3
Shorthand: “Lambda expressions”

public class PuppetMaster{
private CartoonCharacter cc1 = new CartoonCharacter(200, 100, "green");
private CartoonCharacter cc2 = new CartoonCharacter(500, 100, "blue");
private CartoonCharacter selectedCC = cc1;
private double walkDist = 20;

public PuppetMaster(){
UI.addButton("Jim", () -> { this.selectedCC = this.cc1; });
UI.addButton("Jan", () -> { this.selectedCC = this.cc2; });
UI.addButton("Smile", () -> { this.selectedCC.smile(); });
UI.addButton("Frown", () -> { this.selectedCC.frown(); });
UI.addButton("Left", () -> { this.selectedCC.lookLeft(); });
UI.addButton("Right", () -> { this.selectedCC.lookRight(); });
UI.addTextField(“Say", (String wds) -> { this.selectedCC.speak(wds); });
UI.addButton(“Walk", () -> { this.selectedCC.walk(this.walkDist); });
UI.addSlider("Distance", 1, 100, this.walkDist, (double val) -> { this.walkDist = val; });

}
}

You do NOT HAVE
TO USE THESE!!
It is always safe to
have an explicit,
named method.

© Mohammad Nekooei and Peter Andreae

COMP102: 4
More about static

/** Plot a graph of numbers from a file */
public class GraphPlotter {

// Constants for plotting the graph
public static final double GRAPH_LEFT = 50;
public static final double GRAPH_RIGHT = 550;
public static final double GRAPH_BASE = 400;

static means

 “Belongs to class as a whole,
 Not to individual objects of
 this class.”

Static double
GRAPH_LEFT

static double
GRAPH_RIGHT

static double
GRAPH_BASE

50.0 550.0 400.0

GraphPlotter Class

© Mohammad Nekooei and Peter Andreae

COMP102: 5
More about static

/** Plot a graph of numbers from a file */
public class GraphPlotter {

// Constants for plotting the graph
public static final double GRAPH_LEFT = 50;
public static final double GRAPH_RIGHT = 550;
public static final double GRAPH_BASE = 400;

static means

 “Belongs to class as a whole,
 Not to individual objects of
 this class.”

final means

 “Can't change the value
 once it has been set”

Static final double
GRAPH_LEFT

static final double
GRAPH_RIGHT

static final double
GRAPH_BASE

50.0 550.0 400.0public means
 “Can access this from
 code inside other classes”

private means
 “Can only access this from
 code in this class”

GraphPlotter Class

© Mohammad Nekooei and Peter Andreae

COMP102: 6
Static methods:
 Static methods are methods that don’t need an object:

 Methods in the Math class are static methods:
Math.min(…)
Math.max(…)
Math.random()
Math.sqrt(…)

• Methods in the UI class are static methods:
UI.drawRect(…)
UI.println(…)
UI.askInt(…)

None of these methods need an object to be created first.

Methods are called on the class itself, not on an object of that class.

© Mohammad Nekooei and Peter Andreae

COMP102: 7
Static methods: main

import ecs100.*;
import java.util.*;
import java.io.*;

public class GraphPlotter {

:
:

public static void main(String[] args){
GraphPlotter gp = new GraphPlotter();
gp.setupGUI();

}
}

main method
 - static, because belongs to the class,
 not an object of the class
 - called when the program is run directly
 from Java
 - used when running a jar file

© Mohammad Nekooei and Peter Andreae

COMP102: 8
Using main
 Normally, you need a main method to be able to run your program.
 Typically, it creates an object of the class, and calls a method on the object.
 It can do more than that.

 Note: BlueJ lets you create an object and call methods on it, using the mouse.
 simpler methods
 clearer understanding of objects and methods.
 good for testing programs
⇒ This course will use a minimal main(..) method.

© Mohammad Nekooei and Peter Andreae

COMP102: 9
Numeric data types
We have seen three types of numeric values
 int:

 integer, with no fractional part (size = 32 bits)
 eg: 75 -14532
 range: -2,147,483,648 to 2,147,483,647

 -231 to 231 -1 or
 Integer.MIN_VALUE to Integer.MAX_VALUE

 long:
 integer, but allows a bigger range (size = 64 bits)
 eg: 7111333555L -123456789123456789L (L to say it is a long, not an int)
 range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

-263 to 263 -1
Long.MIN_VALUE to Long.MAX_VALUE

© Mohammad Nekooei and Peter Andreae

COMP102: 10
Numeric data types
We have seen three types of numeric values
 double:

 number with a fractional part. (size = 64 bits)

 eg: 3.4 -193.0 -0.0063 4.8769e23 (= 4.8769 x 1023)

 range: -21024 to 21024 or roughly -1.8x10308 to 1.8x10308

 precision: (accuracy) 15 decimal digits (precisely, 52 bits)

 Special values:

 Double.MAX_VALUE: largest positive finite value 1.797693e+308

 Double.MIN_VALUE: smallest positive finite value 4.900000e-324

 Double.NEGATIVE_INFINITY: double value smaller than any other double.

 Double.POSITIVE_INFINITY: double value larger than any other double.

 Double.NaN: "not a number": the error value (eg 0.0/0.0).

© Mohammad Nekooei and Peter Andreae

COMP102: 11
More numeric data types
We have seen two "wrapper" types of numeric values

 Integer:
 wrapping up an int as an object so that it can be put into a list (for example)

 Double:
 wrapping up a double as an object so that it can be put into a list (for example)

There are wrapper types for all the other numeric types.

Java will (in most cases) convert automatically between primitive and wrapper types.

© Mohammad Nekooei and Peter Andreae

COMP102: 12
Other numeric types
Integer types:
 byte (8 bits) -128 to 127
 short (16 bits) -32,768 to 32,767

 Seldom used – just use int normally

Floating point:
 float (32 bits) smaller than doubles, less precision

 eg 1.0f -0.4f
 Seldom used, but sometimes needed for colours, eg

Color.getHSBColor(0.4f, 1.0f, 1.0f);

© Mohammad Nekooei and Peter Andreae

COMP102: 13
Types and Coercion
 Mismatching types:

double num = scan.nextInt();
int number = scan.nextDouble(); Can't do this
double squareroot = Math.sqrt(25); but sqrt wants double?
String name = “number-” + num;

 Java will “coerce” a value to the needed type if it can: eg
 If a method needs a double and is given an int.
 If a double variable is assigned an int value.
 If “adding” any value to a String
 converting between double and Double or int and Integer (or the other Wrapper Types)

 But only if it does not lose any information:
 WON’T coerce a double to an int
 WON’T coerce a String to a number, or vice versa (except when “adding” a number to a String)
 WON’T coerce any object to a mismatching type (except when printing or “adding” to a String)

© Mohammad Nekooei and Peter Andreae

COMP102: 14
Casting
 Where it makes sense to convert a value into another type,

but some information may be lost...

 You can sometimes “cast” the value to the other type:
int number = (int) Math.sqrt(49.5);
float red = (float) Math.random();

 casting a double to an int will lose the fractional part
and may mess up the value if the number is too big!

 Not everything can be cast to everything else!
 Scanner scan = (Scanner) (new PrintStream(“data.txt”));

(〈new type〉) 〈expression〉

© Mohammad Nekooei and Peter Andreae

COMP102: 15
Dealing with lots of values
 We've used ArrayLists (and Lists)

 Road Profiler,
 WordSearcher, SalesVisualiser, FileEditor,

 ArrayLists of numbers, Strings, other objects.

 Created by methods
 UI.askNumbers(…) and UI.askStrings(…)
 Files.readAllLines(Path.of(filename)) (actually, gave us a List, not ArrayList)

 Used for each loops to step through items in an ArrayList

 What more can you do with an ArrayList?

