
© Mohammad Nekooei and Peter Andreae

Classes, Objects, Fields, Constructors
Felix Yan

© Mohammad Nekooei and Peter Andreae

COMP102: 2
Why objects?
 A program has a collection of classes
 Each class has a collection of methods

 FlagDrawer class had several methods:
 public void drawJapanFlag ()
 public void drawFrenchFlag()

 Why do you have to create a FlagDrawer object before you can call these methods on
it?

 Why do you have to call the method on an object?
 What is the object for?

?

© Mohammad Nekooei and Peter Andreae

COMP102: 3
Classes and Objects
 A class is a description of a type of object.

 includes descriptions of methods you can call on this kind of object

 Some kinds of objects we have used:
String Scanner

length, startsWith, substring… next, nextInt, hasNext,…
Butterfly PrintStream

fly, land … println, print, printf…
Animal

goLeft, goRight, jump, speak …

 What else did the objects need?
 Information/Data, specifying the state of the object.

 Stored in fields of the object

© Mohammad Nekooei and Peter Andreae

COMP102: 4
What is an Object
An object is

A collection of data wrapped up together
plus

 A collection of actions to operate on the collection of data

All specified in a class:
• Fields where data is stored
• Methods describing the actions
• Constructor to make new objects
• Constants

 Some objects (top level program objects) may have no data.

© Mohammad Nekooei and Peter Andreae

COMP102: 5
CartoonStory program
 Java Program with 2D cartoon objects (similar to the PetShow with Animals)
 Uses CartoonCharacter objects:

 Methods:
 public void lookLeft()
 public void lookRight()
 public void smile()
 public void frown()
 public void walk(double distance)
 public void speak(String msg)
 public void think(String msg)

 Information a CartoonCharacter object must store:
 its images
 its size
 its state (position, direction, emotion)

© Mohammad Nekooei and Peter Andreae

COMP102: 6
CartoonStory Program

public class CartoonStory{
public void playStory(){

CartoonCharacter ca = new CartoonCharacter(150, 100, “alice”);
ca.lookRight();
ca.lookLeft();
ca.frown();
ca.speak("Is anyone here?");
CartoonCharacter cb = new CartoonCharacter(300, 100, “bob”);
cb.smile(); cb.lookLeft();
cb.speak("Hello");
ca.lookRight(); ca.smile();
ca.speak("Hi there, I'm Jim");
cb.speak("I'm Jan");

}
}

Two different objects of the same
type

Two different objects of
the same type

© Mohammad Nekooei and Peter Andreae

COMP102: 7
Defining a class of objects
 CartoonCharacter is not part of the Java libraries

⇒ have to define the class

 Need to define:
 methods:

 specify the actions the objects can do

 constructor:
 specifies how to make a new CartoonCharacter object

 fields:
 for storing the information about the state of each object

© Mohammad Nekooei and Peter Andreae

COMP102: 8
CartoonCharacter: methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

// erase figure // erase figure
// change direction // change direction
// redraw figure // redraw figure

} }
public void frown() { public void smile() {

// erase figure // erase figure
// change emotion // change emotion
// redraw figure // redraw figure

} }
public void walk(double dist) { public void speak(String msg) {

// erase figure // draw msg in bubble
// change position // wait
// redraw figure // erase msg

} }

© Mohammad Nekooei and Peter Andreae

COMP102: 9
CartoonCharacter: wishful methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

this.erase(); this.erase();
// change direction // change direction
this.draw(); this.draw();

} }
public void frown() { public void smile() {

this.erase(); this.erase();
// change emotion // change emotion
this.draw(); this.draw();

} }
public void walk(double dist) { public void speak(String msg) {

this.erase(); // draw msg in bubble
// change position // wait
this.draw(); // erase msg

} }

public void erase() { public void draw() {
??? ???

© Mohammad Nekooei and Peter Andreae

COMP102: 10
CartoonCharacter: draw

public void draw() {
// work out which image to use (eg, "alice-right-smile.png")
// draw the image on the graphics pane
// wait a bit

}

public void draw() {
 String filename = imagePrefix+"-"+direction+"-"+emotion+".png" ;
 UI.drawImage(filename, figX, figY, wd, ht);
 UI.sleep(500); // wait 500 mS
}

 But where are those variables defined?
 Where do they get their values?

© Mohammad Nekooei and Peter Andreae

COMP102: 11
Remembering state
 Each CartoonCharacter object must remember:

 its state:
 position
 emotion
 direction

 the folder of image files that it is using.
 its size

 Can’t be stored in local variables in a method
 local variables are “lost” when the method finishes.

 Have to be stored in the Object itself
⇒ fields named places inside the object
 (like variables, but in objects, not in methods)

values that may
change over time

© Mohammad Nekooei and Peter Andreae

COMP102: 12
CartoonCharacter Objects
 Objects need places to store values – called “Fields”

 Objects are like entries in your Contacts

CartoonCharacter-24

 figX: .
figY: . wd: .

 ht: .emotion: “ ”
direction: “ ”

imagePrefix: “ ”

CartoonCharacter-27

 figX: .
figY: . wd: .

 ht: .emotion: “ ”
direction: “ ”

imagePrefix: “ ”

© Mohammad Nekooei and Peter Andreae

COMP102: 13
Using fields:

A method can refer to a field of the object it was called on:
 this . fieldname
eg:

public void lookLeft() {
this.erase() ;
this.direction = “left”;
this.draw() ;

}

public void draw() {
String filename = this.imagePrefix + “-” + this.direction + “-” +

this.emotion + “.png” ;
UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UIsleep(500); // wait 500 mS

}

Object the method
was called on

note: fields have no ()

© Mohammad Nekooei and Peter Andreae

COMP102: 14

“left”

Using fields:

 :
cf1. lookLeft();
cf1. walk(20);

 :

public void lookLeft() {

this.erase() ;
this.direction = “left”;
this.draw() ;

}

this: CartoonCharacter-24

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile”

“right”

“alice”

cf1: CartoonCharacter-24

Method worksheet

Object

ID of Object

© Mohammad Nekooei and Peter Andreae

COMP102: 15
Using fields:

public void draw() {

String filename = this. imagePrefix + ”-” + this.direction + “-” +
 this.emotion + “.png” ;

UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UI.sleep(500);

}

this: CartoonCharacter-24

"alice-smile-left"

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile”

“left”

“alice”

Method Worksheet

Object

© Mohammad Nekooei and Peter Andreae

COMP102: 16

“left”

Using fields:

 :
cfg1.lookLeft();
cfg1.walk(20);

 :

public void lookLeft() {

 this.erase() ;
 this.direction = “left”;
 this.draw() ;
}

this: CartoonCharacter-24

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile” “alice”

cfg1: CartoonCharacter-24

Object



© Mohammad Nekooei and Peter Andreae

COMP102: 17
Using fields:

 cfg1.lookLeft();
cfg1.walk(20);

 :

public void walk (double dist) {
this.erase() ;
if (this.direction.equals(“right”)){ this.figX = this.figX + dist; }
else { this.figX = this.figX – dist; }
this.draw() ;

}

this: CartoonCharacter-24

“left”

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

130

300
40

80

“smile” “alice”

Object
150

cfg1: CartoonCharacter-24

© Mohammad Nekooei and Peter Andreae

COMP102: 18
Objects and Classes

Classes define objects:
 Fields: places in an object that store the information

associated with the object
 methods can refer to fields of the object they
were called on:
 this.fieldname
 How do you set up the fields?

 Methods: can be called on any object of the class

 Constructors: specify how to set up an object when it is
first created.

 Constants: specify names for values

© Mohammad Nekooei and Peter Andreae

COMP102: 19
Setting up an object

Must declare the Fields of an object
 Declared in the class

(not inside a method)
 Must specify the type and the name

(just like local variables in methods)
 Can specify an initial value (but you don’t have to!)

if not, automatically initialised with 0 or null
(unlike local variables)

 Have a visibility specifier (“private”)
 Fields remain indefinitely

(unlike local variables)
 The set of field declarations is a template for the object

(just like a method is a template for a worksheet).

Just like local variables
must be declared

© Mohammad Nekooei and Peter Andreae

COMP102: 20
Syntax of Field declarations:

public class CartoonCharacter {
// fields
private double figX; // current position of character
private double figY;
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // base name of images
private double wd = 40; // dimensions of figure
private double ht=80;

// methods …….

field name

expression=

;private type

Every CartoonCharacter will start
with these values in the fields.

Like variables, BUT
 (a) NOT inside a method
 (b) have private in front

© Mohammad Nekooei and Peter Andreae

COMP102: 21
Setting up an object
 How do you initialise the values in the fields?

 Can specify an initial value in the field declaration
but only if every object should start with the same value!!!

 Must have a way of setting up different objects when you create them:

Constructor:
 specifies what happens when you make a new object

(eg, evaluate the expression
 new CartoonCharacter(150, 100, “alice”)

© Mohammad Nekooei and Peter Andreae

COMP102: 22
CartoonCharacter class

public class CartoonCharacter {
// fields
private double figX, figY; // current position of figure
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // folder where images stored
private double wd = 40, ht=80; // dimensions
// constructor
public CartoonCharacter(double x, double y, String prefix){

this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();

}

// methods …….
public void lookLeft() {

this.erase(); …..

Shorthand for declaring two fields
(or variables) of the same type

© Mohammad Nekooei and Peter Andreae

COMP102: 23

public class name type() {

statement

}

parameter name

,

public CartoonCharacter(String base, double x, double y){
this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();
}

Syntax of Constructor Definitions

© Mohammad Nekooei and Peter Andreae

COMP102: 24

 Defining a Constructor
 Part of the class
 Like a method, but called with new
 Does not have a return type

(new always returns an object of the given type)
 this will hold the new object that is being constructed

 Constructor typically
 fills in initial values of fields
 may call other methods on the object,
 can do anything an ordinary method can do.

Constructors

© Mohammad Nekooei and Peter Andreae

COMP102: 25
What happens with new ?

When an object is created
eg new CartoonCharacter(100, 200 , “bob");
 New chunk of memory is allocated

(new filing card).
 Reference (ID) to object is constructed

 CartoonCharacter-24
 Any initial values specified in the field

declarations are assigned to the fields.
If no initial value, default values:
 0 for fields of a number type (int, double, etc)
 false for for boolean fields
 null for fields of an object type (String, Scanner, Car, …)

 The arguments are passed to the constructor
 The actions specified in the constructor are performed on the object.
 The reference is returned as the value of the constructor.

CartoonCharacter-24
figX:

figY:

emotion:

direction:

 imagePrefix:

wd:

ht:

100

200

 40.

 80.

“ smile ”
“ right ”
“ bob ”null

0

0

© Mohammad Nekooei and Peter Andreae

COMP102: 26
The whole Program

public class CartoonStory{

public void playStory(){
CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

}
public void setupGUI(){

UI.addButton("story", this::playStory);
}
public static void main(String[] args){

new CartoonStory().setupGUI();
}

}

Simple class:
- no fields
- constructor for UI
- methods

© Mohammad Nekooei and Peter Andreae

COMP102: 27
CartoonCharacter: fields & constructor

public class CartoonCharacter {
// fields
private double figX; // current position of figure
private double figY;
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // base name of image set
private double wd = 40; // dimensions
private double ht=80;
// constructor
public CartoonCharacter(double x, double y, String prefix){

this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();

}

© Mohammad Nekooei and Peter Andreae

COMP102: 28
CartoonCharacter: methods

public void lookLeft() { public void lookRight() {
this.erase(); this.erase();
this.direction = "left"; this.direction = "right";
this.draw(); this.draw();

} }
public void frown() { public void smile() {

this.erase(); this.erase();
this.emotion = "frown"; this.emotion = "smile";
this.draw(); this.draw();

} }
public void walk(double dist) {

this.erase();
if (this.direction.equals(“right”) {

this.figX = this.figX + dist ;
}
else {

this.figX = this.figX – dist ;
}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 29
CartoonCharacter: methods

public void speak(String msg) {
double bubX = this.figX - …; // and bubY, bubWd, bubHt
UI.drawOval(bubX, bubY, bubWd, bubHt);
UI.drawString(msg, bubX+9, bubY+bubHt/2+3);
UI.sleep(500);
UI.eraseRect(bubX, bubY, bubWd, bubHt);

}
public void erase() {

UI.eraseRect(this.figX, this.figY, this.wd, this.ht);
}
public void draw() {

String filename = this. imagePrefix + “-" + this.direction + "-" + this.emotion+“.png” ;
UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UI.sleep(500);

}

© Mohammad Nekooei and Peter Andreae

COMP102: 30
CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-

this: CartoonStory-3

CartoonCharacter-24
figX: wd:

figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ smile ”
“ right ”
“ alice ”

Is anyone here?

© Mohammad Nekooei and Peter Andreae

COMP102: 31
CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-27

this: CartoonStory-3

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ right ”
“ bob ”

Hello

© Mohammad Nekooei and Peter Andreae

COMP102: 32
Keeping track of Multiple objects

 :
 cf2.lookLeft() ;
 cf1.smile();
 :
public void lookLeft() {

this.erase() ;
this.direction = “left”;
this.draw() ;

}

this: CartoonCharacter-27

cf1: CartoonCharacter-24 cf2: CartoonCharacter-27

CartoonCharacter-24
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ frown ”
“ right ”
“ alice ”

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ right ”
“ blue ”

© Mohammad Nekooei and Peter Andreae

COMP102: 33
Keeping track of Multiple objects

 :
 cf2.lookLeft() ;
 cf1.smile();
 :
public void smile() {

this.erase() ;
this.emotion = “smile”;
this.draw() ;

}

this: CartoonCharacter-24



CartoonCharacter-24
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ frown ”
“ right ”
“ alice ”

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ left ”

“ blue ”

cf1: CartoonCharacter-24 cf2: CartoonCharacter-27

© Mohammad Nekooei and Peter Andreae

COMP102: 34
Bouncing Balls
 Two classes: Bouncer and BouncingBall

© Mohammad Nekooei and Peter Andreae

COMP102: 35
Designing Bouncer (“top level” class)
 How does the user interaction work?
buttons,
constructor

 What are the methods?

© Mohammad Nekooei and Peter Andreae

COMP102: 36
Designing BouncingBall class
 What fields does it need?

 What methods should it have?

 What should happen when it is first created?

© Mohammad Nekooei and Peter Andreae

COMP102: 37
BouncingBall: fields & constructor

public class BouncingBall {
// fields
private double xPos;
private double height;
private double xSpeed;
private double ySpeed;
private Color col;

// constructor
public BouncingBall(double x, double y, double sp){
}

© Mohammad Nekooei and Peter Andreae

COMP102: 38
BouncingBall: methods

public void draw () {

}

public void move() {

}

public double getX() {

}

© Mohammad Nekooei and Peter Andreae

COMP102: 39
Understanding variables and Fields
 Places: variables vs fields
 Scope and Extent
 Visibility
 Encapsulation
 final
 Constants vs fields

© Mohammad Nekooei and Peter Andreae

COMP102: 40
Places: variables vs fields
 Two kinds of places to store information:
 Variables (including parameters)

 defined inside a method
 specify places on a worksheet
 temporary – information is lost when worksheet is finished
 new place created every time method is called (each worksheet)
 only accessible from inside the method.

 Fields
 defined inside a class, but not inside a method
 specify places in an object
 long term – information lasts as long as the object
 new place created for each object
 accessible from all methods in the class, and from constructor.

© Mohammad Nekooei and Peter Andreae

COMP102: 41
Extent and scope
 A place with a value must be accessible to some code at some time.

 Extent: how long it will be accessible
 local variables (and parameters) in methods have a limited extent

⇒ only until the end of the current invocation of the method

 fields have indefinite extent
⇒ as long as the object exists

 Scope: what parts of the code can access it
 Full scope rules are complicated!!!

 local variables: accessible only to statements
 inside the block { … } containing the declaration
 after the declaration

 fields: at least visible to the containing class; maybe further.

© Mohammad Nekooei and Peter Andreae

COMP102: 42
Scope of variables

//read info from file and display
while (scan.hasNext()){

String ans = scan.next();
if (ans.equals("flower")) {

Color center = Color.red;
int diam = 30;

}
else if (ans.equals("bud")) {

Color center = Color.green;
int diam = 15;

}
 :
UI.setColor(center);
UI.fillOval(x, y, diam, diam);
 :

}

while (scan.hasNext()){
String ans = scan.next();
Color center = null;
int diam = 0;
if (ans.equals("flower")) {

center = Color.red;
diam = 15;

}
else if (ans.equals("bud")) {

center = Color.blue;
diam = 30;

}
 :
UI.setColor(center);
UI.fillOval(x, y, diam, diam);
 :
}

Out of scope
may not be intialised

Out of scope
may not be intialised

;
;

How do you fix it?

different
variables!

different
variables!

