Classes, Objects, Fields, Constructors

Felix Yan

© Mohammad Nekooei and Peter Andreae

Why objects?

e A program has a collection of classes

Each class has a collection of methods
e FlagDrawer class had several methods:

e public void drawJapanFlag ()
e public void drawFrenchFlag()

COMP102: 2

Why do you have to create a FlagDrawer object before you can call these methods on

it?

Why do you have to call the method on an object?

What is the object for?

?

© Mohammad Nekooei and Peter Andreae

COMP102: 3

Classes and Objects

e A class is a description of a type of object.
e includes descriptions of methods you can call on this kind of object

e Some kinds of objects we have used:
String Scanner

length, startsWith, substring... next, nextint, hasNext,...
Butterfly PrintStream

fly, land ... println, print, printf...
Animal

golLeft, goRight, jump, speak ...

e \What else did the objects need?

e Information/Data, specifying the state of the object.
e Stored in fields of the object

© Mohammad Nekooei and Peter Andreae

COMP102: 4

What is an Object

An object is
e A collection of data wrapped up together
plus
e A collection of actions to operate on the collection of data

All specified in a class:

* Fields where data is stored

« Methods describing the actions

» Constructor to make new objects
« Constants

e Some objects (top level program objects) may have no data.

© Mohammad Nekooei and Peter Andreae

COMP102: 5

CartoonStory program

e Java Program with 2D cartoon objects (similar to the PetShow with Animals)

e Uses CartoonCharacter objects:
e Methods:
e public void lookLeft()
e public void lookRight()
e public void smile()
e public void frown()
e public void walk(double distance)
e public void speak(String msg)
e public void think(String msg)

e Information a CartoonCharacter object must store:
e its images
e its size
e its state (position, direction, emotion)

© Mohammad Nekooei and Peter Andreae

COMP102: 6

CartoonStory Program

public class CartoonStory{
public void playStory(){

CartoonCharacter ca = new CartoonCharacter(150, 100, “alice”);

ca.lookRight();
ca.lookLeft();
ca.frown();
ca.speak("ls anyone here?");

Two different objects of
the same type

CartoonCharacter cb = new
cb.smile(); cb.lookLeft();

cb.speak("Hello");
ca.lookRight(); ca.smile();
ca.speak("Hi there, I'm Jim");
cb.speak("lI'm Jan");

rtoonCharacter(300, 100, “bob”);

© Mohammad Nekooei and Peter Andreae

COMP102: 7

Defining a class of objects

e CartoonCharacter is not part of the Java libraries
> have to define the class

e Need to define:
e methods:
e specify the actions the objects can do

e constructor:
e specifies how to make a new CartoonCharacter object

e fields:
e for storing the information about the state of each object

© Mohammad Nekooei and Peter Andreae

COMP102: 8

CartoonCharacter: methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

// erase figure /] erase figure
// change direction // change direction
\ // redraw fig}ure // redraw figure
public void frown() { public void smile() {
// erase figure /] erase figure
// change emotion // change emotion
\ // redraw fig}ure // redraw figure
public void walk(double dist) { public void speak(String msg) {
// erase figure // draw msg in bubble
// change position /[wait
/[redraw figure // erase msg

} }

© Mohammad Nekooei and Peter Andreae

COMP102: 9

CartoonCharacter: wishful methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

this.erase(); this.erase();
// change direction // change direction

\ this.draw();} this.draw();

public void frown() { public void smile() {
this.erase(); this.erase();
// change emotion // change emotion

\ this.draw();} this.draw();

public void walk(double dist) { public void speak(String msg) {
this.erase(); // draw msg in bubble
// change position /[wait
this.draw(); /[erase msg

} }

public void erase() { public void draw() {
2?7 7?77

© Mohammad Nekooei and Peter Andreae

COMP102: 10

CartoonCharacter: draw

public void draw() {
// work out which image to use (eg, "alice-right-smile.png")
// draw the image on the graphics pane
// wait a bit

public void draw() {
String filename = imagePrefix+"-"+direction+"-"+emotion+".png" ;
Ul.drawlmage(filename, figX, figY, wd, ht);
Ul.sleep(500); // wait 500 mS

}

e But where are those variables defined?
e WWhere do they get their values?

© Mohammad Nekooei and Peter Andreae

COMP102: 11

Remembering state

e Each CartoonCharacter object must remember:

* its state: values that may
* position ﬁchange over time]
e emotion
e direction

e the folder of image files that it is using.

e its size

e Can’t be stored in local variables in a method
e |ocal variables are “lost” when the method finishes.

e Have to be stored in the Object itself

= fields named places inside the object
(like variables, but in objects, not in methods)

© Mohammad Nekooei and Peter Andreae

CartoonCharacter Objects

e Objects need places to store values — called “Fields”

CartoonCharacter-24
figX: imagePrefix: |° "’
figY: wd:
emotion: |° ” ht:
direction: | "’
CartoonCharacter-27
figX: imagePrefix: | ’
figY: wd:
emotion: | ” ht:
direction: |” ”

e Objects are like entries in your Contacts

COMP102: 12

© Mohammad Nekooei and Peter Andreae

COMP102: 13

Using fields:

A method can refer to a field of the object it was called on:
this . fieldname

eg:

public void lookLeft() {
this.erase() ;
this.direction = “left™;
this.draw() ;

note: fields have no () }

Object the method }
was called on

}

public void draw() {
String filename = this.imagePrefix + “-” + this.direction + “-” +
this.emotion + “.png” ;

Ul.drawlmage(filename, this.figX, this.figY, this.wd, this.ht);
Ulsleep(500); // wait 500 mS

© Mohammad Nekooei and Peter Andreae

COMP102: 14

Using fields:

(Object [CartoonCharacter-24
figX: 150 wd: [0
figY: |300 ht: [g0
emotion: . . = imagePrefix: [«
direction: fight”

cf1. lookLeft():
Cf1.walk(20)(') cf1: CartoonCharacter-24‘—/—L IDofObject]

[Method wo@]

public void lookLeft() {

this: | CartoonCharacter-

this.erase() ;
this.direction = “left”;
this.draw() ;

© Mohammad Nekooei and Peter Andreae

COMP102: 15

Using fields:

(Object [CartoonCharacter-24

figX: 1150 wd: |40

figY: {300 ht: [go
emotion: . . = imagePrefix: [«
direction:) Sz

[Method Worksh*et]

public void draw() { this: | CartoonCharacter-

TET] “ »n

String filename = this. imagePrefix + - + this.direction + “-7 +
this.emotion + “.png” ;

Ul.drawlmage(filename, this.figX, this.figY, this.wd, this.ht);
Ul.sleep(500);

© Mohammad Nekooei and Peter Andreae

COMP102: 16

Using fields:

(Object [CartoonCharacter-24
figX: 1150
figY: |300
emotion: “smile”
direction: eft”

wd: |40
ht: [gp

imagePrefix: [«

, cfg1.lookLeft(); _
cfg1.walk(20); cfg1:

CartoonCharacter-24

public void lookLeft() {

this:

CartoonCharacter-24

v'this.erase() ;
v’ this.direction = “left”;
v this.draw() ;

}

© Mohammad Nekooei and Peter Andreae

COMP102: 17

Using fields:

(Object [CartoonCharacter-24

figX: 1150

figY: (300
emotion: “smile”
direction: “eft”

wd: 40
ht: 80

imagePrefix: [«

v" cfg1.lookLeft();

cfg1.walk(20): cfg1:| CartoonCharacter-24

public void walk (double dist) {

this: | CartoonCharacter-

this.erase() ;

else
this.draw() ;

if (this.direction.equals(“right”)){ this.figX = this.figX + dist; }
{ this.figX = this.figX — dist; }

© Mohammad Nekooei and Peter Andreae

. COMP102: 18
Objects and Classes
Classes define objects:

e Fields: places in an object that store the information
associated with the object

methods can refer to fields of the object they
were called on:
this. fieldname

How do you set up the fields?
e Methods: can be called on any object of the class

e Constructors: specify how to set up an object when it is
first created.

e Constants: specify names for values

© Mohammad Nekooei and Peter Andreae

COMP102: 19

Setting up an object

Must declare the Fields of an object

g
e Declared in the class Just like local variables }
(not inside a method) Lmust be declared

e Must specify the type and the name
(just like local variables in methods)

e Can specify an initial value (but you don'’t have to!)
if not, automatically initialised with 0 or null
(unlike local variables)

e Have a visibility specifier (“private”)

e Fields remain indefinitely
(unlike local variables)

e The set of field declarations is a template for the object
(just like a method is a template for a worksheet).

© Mohammad Nekooei and Peter Andreae

COMP102: 20

Syntax of Field declarations:

private type » field name \

A\ 4

expression f

Like variables, BUT
(a) NOT inside a method

public class CartoonCharacter { | (b) have private in front

/[fields
private double figX; /[current position of character
private double figY;

Every CartoonCharacter will start
with these values in the fields.

private String direction = "right";” // current direction it is facing
private String emotion = "smile"; // current emotion

private String imagePrefix; // base name of images
private double wd =40; // dimensions of figure

private double ht=80;

/ methods

© Mohammad Nekooei and Peter Andreae

COMP102: 21

Setting up an object

e How do you initialise the values in the fields?
e Can specify an initial value in the field declaration
but only if every object should start with the same value!!!

e Must have a way of setting up different objects when you create them:

Constructor:
e specifies what happens when you make a new object

(eg, evaluate the expression
new CartoonCharacter(150, 100, “alice”)

© Mohammad Nekooei and Peter Andreae

COMP102: 22

CartoonCharacter class

Shorthand for declaring two fields
(or variables) of the same type

public class CartoonCharacter {
// fields
private double figX, figY; // current position of figure
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // folder where images stored
private double wd = 40, ht=80; /l dimensions

// constructor
public CartoonCharacter(double x, double y, String prefix){
this.imagePrefix = prefix;

this.figX = x;
this.figY =y;
this.draw();

}

// methods

public void lookLeft() {
this.erase();

© Mohammad Nekooei and Peter Andreae

S

ntax of Constructor Definitions

Y

public

class name

Y
—_

Y

param

<
N

public CartoonCharacter(String base, double x, double y){

this.imagePrefix = prefix;
this.figX = x;

this.figY =y;

this.draw();

}

COMP102: 23

© Mohammad Nekooei and Peter Andreae

COMP102: 24

Constructors

e Defining a Constructor
e Part of the class

e Like a method, but called with new

e Does not have a return type
(new always returns an object of the given type)

e this will hold the new object that is being constructed

e Constructor typically
e fills in initial values of fields
e may call other methods on the object,
e can do anything an ordinary method can do.

© Mohammad Nekooei and Peter Andreae

COMP102: 25

What happens with new ?

When an object is created
eg new CartoonCharacter(100, 200, “bob");

e New chunk of memory is allocated
(new filing card).

e Reference (ID) to object is constructed
CartoonCharacter-24

e Any initial values specified in the field
declarations are assigned to the fields.
If no initial value, default values:

e O for fields of a number type (int, double, etc)
e false for for boolean fields

CartoonCharacter-24

figX:

figY:
emotion:
direction:
imagePrefix:
wd:

ht:

11

7

(13

e null for fields of an object type (String, Scanner, Car, ...)

e The arguments are passed to the constructor

e The actions specified in the constructor are performed on the object.

e The reference is returned as the value of the constructor.

© Mohammad Nekooei and Peter Andreae

COMP102: 26

The whole Program

public class CartoonStory{ JSimpIe class: A
public void playStory(){ - no fields
CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”); t constructor for Ul
cf1.lookLeft(); - methods)

cf1.lookRight();

cf1.frown()

cf1.speak("ls anyone here?");

CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");

cf2.lookLeft() ;

cf1.smile();

cf1.speak("Hi there, I'm Jim");

cf2.speak("I'm Jan");

}
public void setupGUI(){

Ul.addButton("story", this::playStory);
}

public static void main(String[] args){
new CartoonStory().setupGUI();
}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 27

CartoonCharacter: fields & constructor

public class CartoonCharacter {
/[fields
private double figX; // current position of figure
private double figY;
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix;// base name of image set
private double wd =40; // dimensions
private double ht=80;

// constructor
public CartoonCharacter(double x, double y, String prefix){
this.imagePrefix = prefix;

this.figX = x;
this.figY =v;
this.draw();

}

© Mohammad Nekooei and Peter Andreae

COMP102: 28

CartoonCharacter: methods

public void lookLeft() { public void lookRight() {

this.erase(); this.erase();

this.direction = "left™: this.direction = "right";
\ this.draw(); this.draw();
public void frown() { public void smile() {

this.erase(); this.erase();

this.emotion = "frown"; this.emotion = "smile";
\ this.draw(); this.draw();

public void walk(double dist) {
this.erase();
if (this.direction.equals(“right”) {
\ this.figX = this.figX + dist ;

else {
this.figX = this.figX — dist ;
}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 29

CartoonCharacter: methods

public void speak(String msg) {
double bubX = this.figX - ...; // and bubY, bubWd, bubHt
Ul.drawOval(bubX, bubY, bubWd, bubHt);

Ul.drawString(msg, bubX+9, bubY+bubHt/2+3);
Ul.sleep(500);

Ul.eraseRect(bubX, bubY, bubWd, bubHt);
}
public void erase() {
Ul.eraseRect(this.figX, this.figY, this.wd, this.ht);

}

public void draw() {
String filename = this. imagePrefix + “-" + this.direction + "-" + this.emotion+"“.png” ;
Ul.drawlmage(filename, this.figX, this.figY, this.wd, this.ht);
Ul.sleep(500);

© Mohammad Nekooei and Peter Andreae

COMP102: 30

CartoonStory Program: playStory

public void playStory(){ this: | CartoonStory-3

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);

cf1.lookLeft(); cf1: | CartoonCharacter-
cf1.lookRight(); CartoonCharacter-24
cf1.frown() ™ _
cf1.speak("ls anyone here?"); figX: |150. wd: | 40.
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”); figY: |100. ht: | go.
cf2.speak("Hello"); emotion: [« smile
cf2.lookLeft() ; cf2: | CartoonCharacter- direction: _

N ' right
cf1.smile(); . Prefix -
cf1.speak("Hi there, I'm Jim"); magerretix - alice

cf2.speak("lI'm Jan");

[Is anyone here?]

—

© Mohammad Nekooei and Peter Andreae

COMP102: 31

CartoonStory Program: playStory

public void playStory(){ this: | CartoonStory-3

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);

cf1.lookLeft(); cf1: CartoonCharacter-24
cf1.lookRight();

cf1.frown()

cf1.speak("ls anyone here?"); cf2: |CartoonCharacter-27
— CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ; CartoonCharacter-27
cf1.smile(); figX:|300. wdy 40.
cf1.speak("Hi there, I'm Jim"); figY:[100. ht:[80
cf2.speak("I'm Jan"); ;
emotion: [« T
§29 smile
direction: [« ight
imagePrefix : [« oob "

© Mohammad Nekooei and Peter Andreae

Keeping track of Multiple objects

COMP102: 32

CartoonCharacter-24 CartoonCharacter-27
figX:|150. wd: 40, figX:B0o0. wd: 40,
figY:i100. ht:| 80. figY:100. ht:| 80.
emotion: [« frown emotion: T emile
direction: “right " direction: [« ight ”
imagePrefix : T lice imagePrefix : [« olue "
—> v cf2.lookLeft() ; c¢f1: [cartoonCharacter-24 | cf2: [CartoonCharacter-27

cf1.smile();

public void lookLeft() {

this:

CartoonCharacter-27

this.erase() ;
this.direction = “left”;
this.draw() ;

© Mohammad Nekooei and Peter Andreae

COMP102: 33

Keeping track of Multiple objects

—

CartoonCharacter-24 CartoonCharacter-27
figX:|150. wd: 40, figX:B0o0. wd: 40,
figY:i100. ht:| 80. figY:100. ht:| 80.
emotion: [« frown emotion: T emile
direction: “right " direction: “loft "

imagePrefix : T lice imagePrefix : [« olue "

cf2.lookLeft() ; ¢f1: (CartoonCharacter-24 | cf2: [CartoonCharacter-27

cf1.smile();

public void smile() {

this:

CartoonCharacter-24

this.erase() ;

this.emotion = “smile”;

this.draw() ;

© Mohammad Nekooei and Peter Andreae

COMP102: 34

Bouncing Balls

e Two classes: Bouncer and BouncingBall

<A BlueJ: Bouncer — O X
Project Edit Tools Yiew Help

Compile

BouncingBall

Compiling... Done.

© Mohammad Nekooei and Peter Andreae

COMP102: 35

Designing Bouncer (“top level” class

e How does the user interaction work?
=» buttons,
=» constructor

e \What are the methods?

© Mohammad Nekooei and Peter Andreae

COMP102: 36

Designing BouncingBaII class

e What fields does it need?

e \What methods should it have?

e \What should happen when it is first created?

© Mohammad Nekooei and Peter Andreae

COMP102: 37

BouncingBall: fields & constructor

public class BouncingBall {
// fields
private double xPos;
private double height;
private double xSpeed;
private double ySpeed;
private Color col;

/I constructor
public BouncingBall(double x, double y, double sp){

}

© Mohammad Nekooei and Peter Andreae

COMP102: 38

BouncingBall: methods

public void draw () {

}

public void move() {

}
public double getX() {

}

© Mohammad Nekooei and Peter Andreae

COMP102: 39

Understanding variables and Fields

e Places: variables vs fields
e Scope and Extent

e Visibility

e Encapsulation

e final

e Constants vs fields

© Mohammad Nekooei and Peter Andreae

COMP102: 40

Places: variables vs fields

e Two kinds of places to store information:

e Variables (including parameters)
e defined inside a method
e specify places on a worksheet
e temporary — information is lost when worksheet is finished
e new place created every time method is called (each worksheet)
e only accessible from inside the method.

e Fields

e defined inside a class, but not inside a method

e specify places in an object

e long term — information lasts as long as the object

e new place created for each object

e accessible from all methods in the class, and from constructor.

© Mohammad Nekooei and Peter Andreae

COMP102: 41
Extent and scope
e A place with a value must be accessible to some code at some time.
e Extent: how long it will be accessible

e local variables (and parameters) in methods have a limited extent
= only until the end of the current invocation of the method

e fields have indefinite extent
= as long as the object exists

e Scope: what parts of the code can access it
e Full scope rules are complicated!!!

e |ocal variables: accessible only to statements
e inside the block { ... } containing the declaration
o after the declaration

e fields: at least visible to the containing class; maybe further.

© Mohammad Nekooei and Peter Andreae

COMP102: 42

Scope of variables

/Iread info from file and display

while (scan.hasNext() ¥ while (scan.hasNext() }
String ans = scan.next(): String ans = scan.next();

if (ans.equals("flower")) { Color center;

) _ int diam;
Color ce_nter.— Color.red; if (ans.equals("flower")) {
int diam = 30X different

center = Color.red;

} variables! o 4R
else if (ans.equals(™oud™)) { \ diam = 15
i(r:]?ldoi;:]e:tfg_z Color.green: else if (ans.equals("bud")) {
} ’ center = Color.blue;
: [Out of scope diam = 30; N
Ul.setCoIor(cente/r); } : may not be intialised]
UL fillOval(x, y, diam, diam); Ul.setColor(center);

UL fillOval(x, y, diam, diam);

} ‘ How do you fix it? I
hammad Nekooei and Peter Andreae

