
© Mohammad Nekooei and Peter Andreae

Classes, Objects, Fields, Constructors
Felix Yan

© Mohammad Nekooei and Peter Andreae

COMP102: 2
Why objects?
 A program has a collection of classes
 Each class has a collection of methods

 FlagDrawer class had several methods:
 public void drawJapanFlag ()
 public void drawFrenchFlag()

 Why do you have to create a FlagDrawer object before you can call these methods on
it?

 Why do you have to call the method on an object?
 What is the object for?

?

© Mohammad Nekooei and Peter Andreae

COMP102: 3
Classes and Objects
 A class is a description of a type of object.

 includes descriptions of methods you can call on this kind of object

 Some kinds of objects we have used:
String Scanner

length, startsWith, substring… next, nextInt, hasNext,…
Butterfly PrintStream

fly, land … println, print, printf…
Animal

goLeft, goRight, jump, speak …

 What else did the objects need?
 Information/Data, specifying the state of the object.

 Stored in fields of the object

© Mohammad Nekooei and Peter Andreae

COMP102: 4
What is an Object
An object is

A collection of data wrapped up together
plus

 A collection of actions to operate on the collection of data

All specified in a class:
• Fields where data is stored
• Methods describing the actions
• Constructor to make new objects
• Constants

 Some objects (top level program objects) may have no data.

© Mohammad Nekooei and Peter Andreae

COMP102: 5
CartoonStory program
 Java Program with 2D cartoon objects (similar to the PetShow with Animals)
 Uses CartoonCharacter objects:

 Methods:
 public void lookLeft()
 public void lookRight()
 public void smile()
 public void frown()
 public void walk(double distance)
 public void speak(String msg)
 public void think(String msg)

 Information a CartoonCharacter object must store:
 its images
 its size
 its state (position, direction, emotion)

© Mohammad Nekooei and Peter Andreae

COMP102: 6
CartoonStory Program

public class CartoonStory{
public void playStory(){

CartoonCharacter ca = new CartoonCharacter(150, 100, “alice”);
ca.lookRight();
ca.lookLeft();
ca.frown();
ca.speak("Is anyone here?");
CartoonCharacter cb = new CartoonCharacter(300, 100, “bob”);
cb.smile(); cb.lookLeft();
cb.speak("Hello");
ca.lookRight(); ca.smile();
ca.speak("Hi there, I'm Jim");
cb.speak("I'm Jan");

}
}

Two different objects of the same
type

Two different objects of
the same type

© Mohammad Nekooei and Peter Andreae

COMP102: 7
Defining a class of objects
 CartoonCharacter is not part of the Java libraries

⇒ have to define the class

 Need to define:
 methods:

 specify the actions the objects can do

 constructor:
 specifies how to make a new CartoonCharacter object

 fields:
 for storing the information about the state of each object

© Mohammad Nekooei and Peter Andreae

COMP102: 8
CartoonCharacter: methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

// erase figure // erase figure
// change direction // change direction
// redraw figure // redraw figure

} }
public void frown() { public void smile() {

// erase figure // erase figure
// change emotion // change emotion
// redraw figure // redraw figure

} }
public void walk(double dist) { public void speak(String msg) {

// erase figure // draw msg in bubble
// change position // wait
// redraw figure // erase msg

} }

© Mohammad Nekooei and Peter Andreae

COMP102: 9
CartoonCharacter: wishful methods

public class CartoonCharacter {
public void lookLeft() { public void lookRight() {

this.erase(); this.erase();
// change direction // change direction
this.draw(); this.draw();

} }
public void frown() { public void smile() {

this.erase(); this.erase();
// change emotion // change emotion
this.draw(); this.draw();

} }
public void walk(double dist) { public void speak(String msg) {

this.erase(); // draw msg in bubble
// change position // wait
this.draw(); // erase msg

} }

public void erase() { public void draw() {
??? ???

© Mohammad Nekooei and Peter Andreae

COMP102: 10
CartoonCharacter: draw

public void draw() {
// work out which image to use (eg, "alice-right-smile.png")
// draw the image on the graphics pane
// wait a bit

}

public void draw() {
 String filename = imagePrefix+"-"+direction+"-"+emotion+".png" ;
 UI.drawImage(filename, figX, figY, wd, ht);
 UI.sleep(500); // wait 500 mS
}

 But where are those variables defined?
 Where do they get their values?

© Mohammad Nekooei and Peter Andreae

COMP102: 11
Remembering state
 Each CartoonCharacter object must remember:

 its state:
 position
 emotion
 direction

 the folder of image files that it is using.
 its size

 Can’t be stored in local variables in a method
 local variables are “lost” when the method finishes.

 Have to be stored in the Object itself
⇒ fields named places inside the object
 (like variables, but in objects, not in methods)

values that may
change over time

© Mohammad Nekooei and Peter Andreae

COMP102: 12
CartoonCharacter Objects
 Objects need places to store values – called “Fields”

 Objects are like entries in your Contacts

CartoonCharacter-24

 figX: .
figY: . wd: .

 ht: .emotion: “ ”
direction: “ ”

imagePrefix: “ ”

CartoonCharacter-27

 figX: .
figY: . wd: .

 ht: .emotion: “ ”
direction: “ ”

imagePrefix: “ ”

© Mohammad Nekooei and Peter Andreae

COMP102: 13
Using fields:

A method can refer to a field of the object it was called on:
 this . fieldname
eg:

public void lookLeft() {
this.erase() ;
this.direction = “left”;
this.draw() ;

}

public void draw() {
String filename = this.imagePrefix + “-” + this.direction + “-” +

this.emotion + “.png” ;
UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UIsleep(500); // wait 500 mS

}

Object the method
was called on

note: fields have no ()

© Mohammad Nekooei and Peter Andreae

COMP102: 14

“left”

Using fields:

 :
cf1. lookLeft();
cf1. walk(20);

 :

public void lookLeft() {

this.erase() ;
this.direction = “left”;
this.draw() ;

}

this: CartoonCharacter-24

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile”

“right”

“alice”

cf1: CartoonCharacter-24

Method worksheet

Object

ID of Object

© Mohammad Nekooei and Peter Andreae

COMP102: 15
Using fields:

public void draw() {

String filename = this. imagePrefix + ”-” + this.direction + “-” +
 this.emotion + “.png” ;

UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UI.sleep(500);

}

this: CartoonCharacter-24

"alice-smile-left"

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile”

“left”

“alice”

Method Worksheet

Object

© Mohammad Nekooei and Peter Andreae

COMP102: 16

“left”

Using fields:

 :
cfg1.lookLeft();
cfg1.walk(20);

 :

public void lookLeft() {

 this.erase() ;
 this.direction = “left”;
 this.draw() ;
}

this: CartoonCharacter-24

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

150

300
40

80

“smile” “alice”

cfg1: CartoonCharacter-24

Object

© Mohammad Nekooei and Peter Andreae

COMP102: 17
Using fields:

 cfg1.lookLeft();
cfg1.walk(20);

 :

public void walk (double dist) {
this.erase() ;
if (this.direction.equals(“right”)){ this.figX = this.figX + dist; }
else { this.figX = this.figX – dist; }
this.draw() ;

}

this: CartoonCharacter-24

“left”

CartoonCharacter-24
figX: wd:

figY: ht:

emotion: imagePrefix:

direction:

130

300
40

80

“smile” “alice”

Object
150

cfg1: CartoonCharacter-24

© Mohammad Nekooei and Peter Andreae

COMP102: 18
Objects and Classes

Classes define objects:
 Fields: places in an object that store the information

associated with the object
 methods can refer to fields of the object they
were called on:
 this.fieldname
 How do you set up the fields?

 Methods: can be called on any object of the class

 Constructors: specify how to set up an object when it is
first created.

 Constants: specify names for values

© Mohammad Nekooei and Peter Andreae

COMP102: 19
Setting up an object

Must declare the Fields of an object
 Declared in the class

(not inside a method)
 Must specify the type and the name

(just like local variables in methods)
 Can specify an initial value (but you don’t have to!)

if not, automatically initialised with 0 or null
(unlike local variables)

 Have a visibility specifier (“private”)
 Fields remain indefinitely

(unlike local variables)
 The set of field declarations is a template for the object

(just like a method is a template for a worksheet).

Just like local variables
must be declared

© Mohammad Nekooei and Peter Andreae

COMP102: 20
Syntax of Field declarations:

public class CartoonCharacter {
// fields
private double figX; // current position of character
private double figY;
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // base name of images
private double wd = 40; // dimensions of figure
private double ht=80;

// methods …….

field name

expression=

;private type

Every CartoonCharacter will start
with these values in the fields.

Like variables, BUT
 (a) NOT inside a method
 (b) have private in front

© Mohammad Nekooei and Peter Andreae

COMP102: 21
Setting up an object
 How do you initialise the values in the fields?

 Can specify an initial value in the field declaration
but only if every object should start with the same value!!!

 Must have a way of setting up different objects when you create them:

Constructor:
 specifies what happens when you make a new object

(eg, evaluate the expression
 new CartoonCharacter(150, 100, “alice”)

© Mohammad Nekooei and Peter Andreae

COMP102: 22
CartoonCharacter class

public class CartoonCharacter {
// fields
private double figX, figY; // current position of figure
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // folder where images stored
private double wd = 40, ht=80; // dimensions
// constructor
public CartoonCharacter(double x, double y, String prefix){

this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();

}

// methods …….
public void lookLeft() {

this.erase(); …..

Shorthand for declaring two fields
(or variables) of the same type

© Mohammad Nekooei and Peter Andreae

COMP102: 23

public class name type() {

statement

}

parameter name

,

public CartoonCharacter(String base, double x, double y){
this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();
}

Syntax of Constructor Definitions

© Mohammad Nekooei and Peter Andreae

COMP102: 24

 Defining a Constructor
 Part of the class
 Like a method, but called with new
 Does not have a return type

(new always returns an object of the given type)
 this will hold the new object that is being constructed

 Constructor typically
 fills in initial values of fields
 may call other methods on the object,
 can do anything an ordinary method can do.

Constructors

© Mohammad Nekooei and Peter Andreae

COMP102: 25
What happens with new ?

When an object is created
eg new CartoonCharacter(100, 200 , “bob");
 New chunk of memory is allocated

(new filing card).
 Reference (ID) to object is constructed

 CartoonCharacter-24
 Any initial values specified in the field

declarations are assigned to the fields.
If no initial value, default values:
 0 for fields of a number type (int, double, etc)
 false for for boolean fields
 null for fields of an object type (String, Scanner, Car, …)

 The arguments are passed to the constructor
 The actions specified in the constructor are performed on the object.
 The reference is returned as the value of the constructor.

CartoonCharacter-24
figX:

figY:

emotion:

direction:

 imagePrefix:

wd:

ht:

100

200

 40.

 80.

“ smile ”
“ right ”
“ bob ”null

0

0

© Mohammad Nekooei and Peter Andreae

COMP102: 26
The whole Program

public class CartoonStory{

public void playStory(){
CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

}
public void setupGUI(){

UI.addButton("story", this::playStory);
}
public static void main(String[] args){

new CartoonStory().setupGUI();
}

}

Simple class:
- no fields
- constructor for UI
- methods

© Mohammad Nekooei and Peter Andreae

COMP102: 27
CartoonCharacter: fields & constructor

public class CartoonCharacter {
// fields
private double figX; // current position of figure
private double figY;
private String direction = "right"; // current direction it is facing
private String emotion = "smile"; // current emotion
private String imagePrefix; // base name of image set
private double wd = 40; // dimensions
private double ht=80;
// constructor
public CartoonCharacter(double x, double y, String prefix){

this.imagePrefix = prefix;
this.figX = x;
this.figY = y;
this.draw();

}

© Mohammad Nekooei and Peter Andreae

COMP102: 28
CartoonCharacter: methods

public void lookLeft() { public void lookRight() {
this.erase(); this.erase();
this.direction = "left"; this.direction = "right";
this.draw(); this.draw();

} }
public void frown() { public void smile() {

this.erase(); this.erase();
this.emotion = "frown"; this.emotion = "smile";
this.draw(); this.draw();

} }
public void walk(double dist) {

this.erase();
if (this.direction.equals(“right”) {

this.figX = this.figX + dist ;
}
else {

this.figX = this.figX – dist ;
}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 29
CartoonCharacter: methods

public void speak(String msg) {
double bubX = this.figX - …; // and bubY, bubWd, bubHt
UI.drawOval(bubX, bubY, bubWd, bubHt);
UI.drawString(msg, bubX+9, bubY+bubHt/2+3);
UI.sleep(500);
UI.eraseRect(bubX, bubY, bubWd, bubHt);

}
public void erase() {

UI.eraseRect(this.figX, this.figY, this.wd, this.ht);
}
public void draw() {

String filename = this. imagePrefix + “-" + this.direction + "-" + this.emotion+“.png” ;
UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);
UI.sleep(500);

}

© Mohammad Nekooei and Peter Andreae

COMP102: 30
CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-

this: CartoonStory-3

CartoonCharacter-24
figX: wd:

figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ smile ”
“ right ”
“ alice ”

Is anyone here?

© Mohammad Nekooei and Peter Andreae

COMP102: 31
CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “alice”);
cf1.lookLeft();
cf1.lookRight();
cf1.frown()
cf1.speak("Is anyone here?");
CartoonCharacter cf2 = new CartoonCharacter(300, 100, “bob”);
cf2.speak("Hello");
cf2.lookLeft() ;
cf1.smile();
cf1.speak("Hi there, I'm Jim");
cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-27

this: CartoonStory-3

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ right ”
“ bob ”

Hello

© Mohammad Nekooei and Peter Andreae

COMP102: 32
Keeping track of Multiple objects

 :
 cf2.lookLeft() ;
 cf1.smile();
 :
public void lookLeft() {

this.erase() ;
this.direction = “left”;
this.draw() ;

}

this: CartoonCharacter-27

cf1: CartoonCharacter-24 cf2: CartoonCharacter-27

CartoonCharacter-24
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ frown ”
“ right ”
“ alice ”

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ right ”
“ blue ”

© Mohammad Nekooei and Peter Andreae

COMP102: 33
Keeping track of Multiple objects

 :
 cf2.lookLeft() ;
 cf1.smile();
 :
public void smile() {

this.erase() ;
this.emotion = “smile”;
this.draw() ;

}

this: CartoonCharacter-24

CartoonCharacter-24
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

150.
100.

 40.
 80.

“ frown ”
“ right ”
“ alice ”

CartoonCharacter-27
 figX: wd:

 figY: ht:

emotion:

direction:

 imagePrefix :

300.
100.

 40.
 80.

“ smile ”
“ left ”

“ blue ”

cf1: CartoonCharacter-24 cf2: CartoonCharacter-27

© Mohammad Nekooei and Peter Andreae

COMP102: 34
Bouncing Balls
 Two classes: Bouncer and BouncingBall

© Mohammad Nekooei and Peter Andreae

COMP102: 35
Designing Bouncer (“top level” class)
 How does the user interaction work?
buttons,
constructor

 What are the methods?

© Mohammad Nekooei and Peter Andreae

COMP102: 36
Designing BouncingBall class
 What fields does it need?

 What methods should it have?

 What should happen when it is first created?

© Mohammad Nekooei and Peter Andreae

COMP102: 37
BouncingBall: fields & constructor

public class BouncingBall {
// fields
private double xPos;
private double height;
private double xSpeed;
private double ySpeed;
private Color col;

// constructor
public BouncingBall(double x, double y, double sp){
}

© Mohammad Nekooei and Peter Andreae

COMP102: 38
BouncingBall: methods

public void draw () {

}

public void move() {

}

public double getX() {

}

© Mohammad Nekooei and Peter Andreae

COMP102: 39
Understanding variables and Fields
 Places: variables vs fields
 Scope and Extent
 Visibility
 Encapsulation
 final
 Constants vs fields

© Mohammad Nekooei and Peter Andreae

COMP102: 40
Places: variables vs fields
 Two kinds of places to store information:
 Variables (including parameters)

 defined inside a method
 specify places on a worksheet
 temporary – information is lost when worksheet is finished
 new place created every time method is called (each worksheet)
 only accessible from inside the method.

 Fields
 defined inside a class, but not inside a method
 specify places in an object
 long term – information lasts as long as the object
 new place created for each object
 accessible from all methods in the class, and from constructor.

© Mohammad Nekooei and Peter Andreae

COMP102: 41
Extent and scope
 A place with a value must be accessible to some code at some time.

 Extent: how long it will be accessible
 local variables (and parameters) in methods have a limited extent

⇒ only until the end of the current invocation of the method

 fields have indefinite extent
⇒ as long as the object exists

 Scope: what parts of the code can access it
 Full scope rules are complicated!!!

 local variables: accessible only to statements
 inside the block { … } containing the declaration
 after the declaration

 fields: at least visible to the containing class; maybe further.

© Mohammad Nekooei and Peter Andreae

COMP102: 42
Scope of variables

//read info from file and display
while (scan.hasNext()){

String ans = scan.next();
if (ans.equals("flower")) {

Color center = Color.red;
int diam = 30;

}
else if (ans.equals("bud")) {

Color center = Color.green;
int diam = 15;

}
 :
UI.setColor(center);
UI.fillOval(x, y, diam, diam);
 :

}

while (scan.hasNext()){
String ans = scan.next();
Color center = null;
int diam = 0;
if (ans.equals("flower")) {

center = Color.red;
diam = 15;

}
else if (ans.equals("bud")) {

center = Color.blue;
diam = 30;

}
 :
UI.setColor(center);
UI.fillOval(x, y, diam, diam);
 :
}

Out of scope
may not be intialised

Out of scope
may not be intialised

;
;

How do you fix it?

different
variables!

different
variables!

