
© Mohammad Nekooei and Peter Andreae

COMP102: 43
Fields: scope, visibility, encapsulation
 Fields are accessible to all code in all the (ordinary) methods in the class.
 Should they be accessible to methods in other classes?

⇒ visibility:   public  or  private
 public means that methods in other classes can access the fields

cfg1.figX = 30    in the CartoonStory class would be OK
 private means that methods in other classes cannot access the fields

cfg1.figX = 30    in the CartoonStory class would be an error.

The principle of encapsulation says
 Keep fields private.
 Provide methods to access and modify the 

fields, if necessary



© Mohammad Nekooei and Peter Andreae

COMP102: 44
Final:  fields that don’t vary
 If a place will hold a value that should not change (a “constant”):

 signal it to reader
 ensure that no code changes it by mistake

 final is a modifier on field or variable declarations
 means that it can only be assigned to once.

public class CartoonFigure {
private double figX,  figY; 
private String direction = "right";
private String emotion = "smiling";
private final String imagePrefix;
private final double wd = 40
private final double  ht = 80;

public CartoonFigure(double x, double y, String img ){
this.imagePrefix = img   // fine – this is the first assignment
this.wd = 50;                   // NO!!! Can't change the previous value



© Mohammad Nekooei and Peter Andreae

COMP102: 45
public static final:  class wide constants
 Constants: public static final  fields

 public – can be accessed by code outside this class
 static – single place belonging to the class, not a separate place for each object
 final – value can't be changed once assigned

public class CartoonFigure {
private double figX;       
private double figY; 
private String direction = "right";
private String emotion = "smiling";
private final String baseImgNm;
public static final double WD = 40
public static final double HT=80;

CartoonFigure-24

figX: 

figY:

emotion:

direction:

 baseImgNm:

    .
     .
“               ”
“                ”
“            ”



© Mohammad Nekooei and Peter Andreae

COMP102: 1
GUI’s and Event driven input
 In a GUI, the interaction is controlled by the user, 

not by the program

 User initiates "events"
 buttons
 menus
 mouse press/release/drag
 text fields
 sliders
 keys

 Program responds



© Mohammad Nekooei and Peter Andreae

COMP102: 2
Buttons using the ecs100 library

public class MyClass {
public void setupGUI(){

UI.addButton("Clear", UI::clearGraphics);
UI.addButton("Go", this::runFireworks);
UI.addButton("Quit", UI::quit);

}

public void runFireworks(){
…….

}

public static void main(String[ ] args){
MyClass mc = new MyClass();
mc.setupGUI();

}
}



© Mohammad Nekooei and Peter Andreae

COMP102: 3
More kinds of events.
 Buttons
 Text fields
 Menus
 Mouse press/release/drag
 Sliders
 Keys
 …..
 How does Java respond to events etc?

 When event occurs (button pressed / text entered in box / slider changed / mouse clicked/…)
 Java looks up the object & method attached to the event (the "listener")
 Calls the method on the object

 passing any information involved in the event as arguments.



© Mohammad Nekooei and Peter Andreae

COMP102: 4
Event driven input:
Simplest event:    "do it"
 Buttons:

 must specify what method to call on what object
 no further information available

Events with information attached 
 TextFields:

 user enters a text value
 must specify the method to call, and 
 ensure that the text value gets passed to the method

 Mouse events:
 presses, releases, clicks, drags, moves
 must specify what method to call
 ensure the kind of action and the position of the mouse gets passed to the method.

Jump

Monday



© Mohammad Nekooei and Peter Andreae

COMP102: 5
Setting up event-driven input
 Setting up the GUI:

 To add a button to the UI:   
 specify name of button and method to call        (object ::method    or    class ::method)

(must be a method with no parameters)
eg:  UI.addButton("Go", this::startGame);                        public void startGame(){…..
       UI.addButton("End", UI::quit);

 To add a textfield to the UI:
 Specify name of textfield and method to call 
    (must be a method with one String parameter)
eg   UI.addTextField("name", this::setName);                   public void setName(String n){…..

  To add a slider to the UI:
 Specify name of slider, min, max, initial values, and method to call 
    (must be a method with one double parameter)
eg   UI.addSlider("speed", 10, 50, 20, this::setSpeed); );
                                                                                            public void setSpeed(double v){…..

Go

name:        
  Jason

10 50



© Mohammad Nekooei and Peter Andreae

COMP102: 6
PuppetMaster

Smile

Frown

Right

Walk

Speak

Distance

Left



© Mohammad Nekooei and Peter Andreae

COMP102: 7
PuppetMaster: setting up Buttons etc

public class PuppetMaster   …   { 
// fields 

/** set up the GUI */
public void setupGUI (){

UI.addButton( "Smile", this::doSmile);
UI.addButton( "Frown", this::doFrown);
UI.addButton( "Left", this::doLeft);
UI.addButton( "Right", this::doRight);
UI.addTextField( "Say", this::doSpeak);
UI.addButton( "Walk", this::doWalk);
UI.addSlider( "Distance", 1, 100, 20, this::setDist);

…
} 
// methods to respond

public static void main (String[ ] args){
new PuppetMaster().setupGUI();

}

Smile

Frown

Say

Left

Right

Walk

Distance
1 100



© Mohammad Nekooei and Peter Andreae

COMP102: 8
Responding to buttons and textFields

public class PuppetMaster {
public void doSmile(){

// tell the CartoonCharacter to smile
}
public void doFrown(){

// tell the CartoonCharacter to frown
}
public void doSpeak(String words){

// tell the CartoonCharacter to say the words
}
public void setDist(double value){

// remember the value
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);  
UI.addButton("Frown", this::doFrown);  …..
UI.addTextField(“Say", this::doSpeak);  
UI.addSlider( "Distance", 1, 100, 20, this::setDist);

}

A method called by a button
must have no parameters

Methods called by buttons
must have no parameters

Methods called by a textField
must have one String parameter

Methods called by a slider
must have one double parameter



© Mohammad Nekooei and Peter Andreae

COMP102: 9
Event driven input and fields
 Each event will make a new method call.
  can't remember anything between events in local variables in the methods.

 Typically, need fields in the object to remember information between events.

 eg: PuppetMaster  has to remember the CartoonCharacter object in a field



© Mohammad Nekooei and Peter Andreae

COMP102: 10
PuppetMaster: Design

Structure of the PuppetMaster class:

public class PuppetMaster  { 

// fields to store values between events/method calls
private ….

// set up GUI  
public void setupGUI() {

// set up the buttons, slider, textField, to call methods on the object
}

// methods to respond to the buttons,  slider, textField
public  void …

public static void main (String[] args){
// make a PuppetMaster object and call setupGUI

}



© Mohammad Nekooei and Peter Andreae

COMP102: 11
PuppetMaster: Using Fields

Actions on the CartoonCharacter happen in response to different events
⇒ will be in different method calls 
⇒ need to store character in a field, not a local variable. 

public  class  PuppetMaster{
// fields 
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

public void doSmile(){
this.cc.smile();

}
public void doFrown(){

this.cc.frown();
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);  
UI.addButton("Frown", this::doFrown);  

⋮
}



© Mohammad Nekooei and Peter Andreae

COMP102: 12
PuppetMaster: TextFields (boxes)

public  class  PuppetMaster{
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

public void doSmile(){
this.cc.smile();

}
        :

public void doSpeak(String words){
this.cc.speak(words);

}

public void setupGUI(){
UI.addButton("Smile", this::doSmile);  
UI.addButton("Frown", this::doFrown);  

UI.addTextField(“Say", this::doSpeak);  
}



© Mohammad Nekooei and Peter Andreae

COMP102: 13
PuppetMaster: Sliders

public  class  PuppetMaster {
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");
private double walkDist = 20 ;

public void doWalk() { 
this.cc.walk(this.walkDist);

}
public void setDist(double value){

this.walkDist = value;
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);  
UI.addButton("Frown", this::doFrown);  

:
UI.addButton(“Walk", this::doWalk); 
UI.addSlider( "Distance", 1, 100, 20, this::setDist);

}
:

Typical design:  
   field to store value 
   from one event,  
   for use by another event

A method called by 
a slider  must have 
one double parameter



© Mohammad Nekooei and Peter Andreae

COMP102: 14
PuppetMaster: Using Fields

Listeners in the buttons etc don't have to call methods on this or UI:

public  class  PuppetMaster{
// fields 
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");
// constructor
public void setupGUI(){

UI.addButton("Smile",  cc::smile);    // call smile on the cc object, directly
UI.addButton("Frown", cc::frown); 

:
}
public void doSmile(){

this.cc.smile();
}
public void doFrown(){

this.cc.frown();
}

this::doSmile);                                                                          
this::doFrown);



© Mohammad Nekooei and Peter Andreae

COMP102: 15
GUI:  Mouse input 
 Just like buttons, except don’t have to put anything on screen

 Each press / release / click on the graphics pane will be an event
 Must tell UI the listener:   the object::method to call when a mouse event occurs

UI.setMouseListener(game::doMouse);
 Must define method to say how to respond to the mouse.

parameters:  kind of mouse event and position of mouse event
public void doMouse(String action, double x, double y) {

if (action.equals("pressed") ) {
// what to do if mouse button is pressed

} 
else if (action.equals("released") ) {

// what to do if mouse button is released
}
else if (action.equals("clicked") ) {

// what to do if mouse button is clicked
}

}

where action 
occurred

press-release
in same place



© Mohammad Nekooei and Peter Andreae

COMP102: 16
Using the mouse.
 Want to let user specify input with the mouse, 

 eg: drawing lines

 Typical pattern:
 On "pressed", 

 just remember the position

 On "released", 
 do something with remembered position and new position

1

2

(100,80)
(260,90)



© Mohammad Nekooei and Peter Andreae

COMP102: 17
Mouse Input

public class LineDrawer {       /**Let user draw lines on graphics pane with the mouse. */
private double startX, startY;  // fields to remember “pressed” position
public void setupGUI(){

UI.setLineWidth(10); 
UI.setMouseListener(this::doMouse);
UI.setDivider(0.0);

}

public void doMouse(String action, double x, double y) {
if (action.equals("pressed") ) {

this.startX = x;     
this.startY = y;

} 
else if (action.equals("released") ) {

UI.drawLine(this.startX, this.startY,  x,  y);
}

}



© Mohammad Nekooei and Peter Andreae

COMP102: 18
Mouse Input
Simple mouse events:       UI.setMouseListener(this::doMouse);
 pressed
 released
 clicked

Mouse movement:       UI.setMouseMotionListener(this::doMouse);
 pressed, released, clicked
 dragged
 moved



© Mohammad Nekooei and Peter Andreae

COMP102: 19
Selecting Colors: JColorChooser

public class LineDrawer {
private double startX, startY;  // fields to remember “pressed” position
private Color currentColor = Color.black; 

public void doMouse(String action, double x, double y) {
if (action.equals("pressed") )          {   this.startX = x;  this.startY = y;  } 
else if (action.equals("released") ) {   UI.drawLine(this.startX, this.startY,  x,  y);  }

}
public void doChooseColour(){

this.currentColor = JColorChooser.showDialog(null, "Choose Color", this.currentColor);
UI.setColor(this.currentColor);

}
public static  void main(String[ ] args){

UI.setLineWidth(10);
LineDrawer drawer = new LineDrawer();
UI.setMouseListener(drawer::doMouse);
UI.addButton("Color", drawer::doChooseColour);

}



© Mohammad Nekooei and Peter Andreae

COMP102: 20
Numbers program
 Program for constructing files of numbers:

 Allow user to select a new file
 Allow user to enter a set of numbers with the mouse (height of mouse click is the number)
 Display numbers as bar chart and list in text pane
 Save numbers to the file as they are entered

 User Interface:
 Button to clear screen and select new file.
 Graphics pane to select (with mouse) 

and display the numbers
 Text pane to display list of numbers

130
72
281
98
264
97

Numbers

NewFile



© Mohammad Nekooei and Peter Andreae

COMP102: 21
Numbers: Design
 Design:

 When does something happen?
 button presses
 mouse clicks

 Fields
 to store the file (PrintStream) that the numbers are being saved to
 to remember the horizontal position of the next bar.

 Methods to respond to mouse
 record a new number

 Method to respond to button
 clear and start a new file 

 main method
 create object
 set up the interface

Numbers

NewFile



© Mohammad Nekooei and Peter Andreae

COMP102: 22
Numbers: Design

public class Numbers {
private PrintStream output;
private double barX = 0;
private static final double BASE= 450;

public void doNew() {…

public void doMouse( …

public static void main(String[ ] args){
Numbers num = new Numbers();
UI.setMouseListener(num::doMouse);
UI.addButton("NewFile", num::doNewFile); 
UI.drawLine(0, BASE, 600, BASE);

}
}

Numbers

NewFile



© Mohammad Nekooei and Peter Andreae

COMP102: 23
Respond to Mouse:
 When user clicks/releases:

 work out the number they meant
 draw a bar on the graphics pane
 display it in the text pane
 print it to the file

public void doMouse(String action, double x, double y) {
if (action.equals("released")) {

double number = BASE - y;
this.barX = this.barX + 10;
UI.fillRect(this.barX, y, 5, number);
UI.println(number);
this.output.println(number);

}
}

130
Numbers

NewFile

if (this.outputFile != null) {
this.outputFile.println(number);

  }

What's the 
problem?



© Mohammad Nekooei and Peter Andreae

COMP102: 24
Respond to "NewFile" button

public void doNewFile(){
UI.clearPanes();
UI.drawLine(0, BASE, 600, BASE);
this.barX = 0;
this.output.close();
try{

this.output = new PrintStream(UIFileChooser.save());
} catch(IOException e) { UI.println("File error: "+e); }

}

if (this.output != null) {
this.output.close();
  }

Still a 
problem!



© Mohammad Nekooei and Peter Andreae

COMP102: 25
GUI design: choosing object to act on

Suppose we have two characters!

Problem:
 Which character should smile/turn/walk/speak?

 Event-driven input can be tricky!

Smile

Frown

Speak

Distance

Left

Right

Walk



© Mohammad Nekooei and Peter Andreae

COMP102: 26
GUI design: choosing object to act on
 One typical simple GUI interaction mechanism

1. Select object you want to act on 
2.Choose action.

 Must remember the currently selected object:
 in a field, because the action will be performed in a later method

this.selectedCC = cc1;

 Typically, the “selected object”  doesn’t change until user
selects another object.



© Mohammad Nekooei and Peter Andreae

COMP102: 27
PuppetMaster: two characters

Smile

Frown

Speak

Distance

Walk

CartoonCharacter-11

emotion:   "smile"figX:  110

figY:  200 direction:   "right"

imgBaseName:     "blue"

CartoonCharacter-12

emotion:  "frown"figX:  350

figY:  200 direction:      "left"

imgBaseName:     "green"

PuppetMaster-3

fields:

walkDistance:     20  

cc1:   CartoonCharacter-11

cc2:   CartoonCharacter-12

selectedCC:   CartoonCharacter-11CartoonCharacter-12


