
© Mohammad Nekooei and Peter Andreae

COMP102: 43
Fields: scope, visibility, encapsulation
 Fields are accessible to all code in all the (ordinary) methods in the class.
 Should they be accessible to methods in other classes?

⇒ visibility: public or private
 public means that methods in other classes can access the fields

cfg1.figX = 30 in the CartoonStory class would be OK
 private means that methods in other classes cannot access the fields

cfg1.figX = 30 in the CartoonStory class would be an error.

The principle of encapsulation says
 Keep fields private.
 Provide methods to access and modify the

fields, if necessary

© Mohammad Nekooei and Peter Andreae

COMP102: 44
Final: fields that don’t vary
 If a place will hold a value that should not change (a “constant”):

 signal it to reader
 ensure that no code changes it by mistake

 final is a modifier on field or variable declarations
 means that it can only be assigned to once.

public class CartoonFigure {
private double figX, figY;
private String direction = "right";
private String emotion = "smiling";
private final String imagePrefix;
private final double wd = 40
private final double ht = 80;

public CartoonFigure(double x, double y, String img){
this.imagePrefix = img // fine – this is the first assignment
this.wd = 50; // NO!!! Can't change the previous value

© Mohammad Nekooei and Peter Andreae

COMP102: 45
public static final: class wide constants
 Constants: public static final fields

 public – can be accessed by code outside this class
 static – single place belonging to the class, not a separate place for each object
 final – value can't be changed once assigned

public class CartoonFigure {
private double figX;
private double figY;
private String direction = "right";
private String emotion = "smiling";
private final String baseImgNm;
public static final double WD = 40
public static final double HT=80;

CartoonFigure-24

figX:

figY:

emotion:

direction:

 baseImgNm:

 .
 .
“ ”
“ ”
“ ”

© Mohammad Nekooei and Peter Andreae

COMP102: 1
GUI’s and Event driven input
 In a GUI, the interaction is controlled by the user,

not by the program

 User initiates "events"
 buttons
 menus
 mouse press/release/drag
 text fields
 sliders
 keys

 Program responds

© Mohammad Nekooei and Peter Andreae

COMP102: 2
Buttons using the ecs100 library

public class MyClass {
public void setupGUI(){

UI.addButton("Clear", UI::clearGraphics);
UI.addButton("Go", this::runFireworks);
UI.addButton("Quit", UI::quit);

}

public void runFireworks(){
…….

}

public static void main(String[] args){
MyClass mc = new MyClass();
mc.setupGUI();

}
}

© Mohammad Nekooei and Peter Andreae

COMP102: 3
More kinds of events.
 Buttons
 Text fields
 Menus
 Mouse press/release/drag
 Sliders
 Keys
 …..
 How does Java respond to events etc?

 When event occurs (button pressed / text entered in box / slider changed / mouse clicked/…)
 Java looks up the object & method attached to the event (the "listener")
 Calls the method on the object

 passing any information involved in the event as arguments.

© Mohammad Nekooei and Peter Andreae

COMP102: 4
Event driven input:
Simplest event: "do it"
 Buttons:

 must specify what method to call on what object
 no further information available

Events with information attached
 TextFields:

 user enters a text value
 must specify the method to call, and
 ensure that the text value gets passed to the method

 Mouse events:
 presses, releases, clicks, drags, moves
 must specify what method to call
 ensure the kind of action and the position of the mouse gets passed to the method.

Jump

Monday

© Mohammad Nekooei and Peter Andreae

COMP102: 5
Setting up event-driven input
 Setting up the GUI:

 To add a button to the UI:
 specify name of button and method to call (object ::method or class ::method)

(must be a method with no parameters)
eg: UI.addButton("Go", this::startGame); public void startGame(){…..
 UI.addButton("End", UI::quit);

 To add a textfield to the UI:
 Specify name of textfield and method to call
 (must be a method with one String parameter)
eg UI.addTextField("name", this::setName); public void setName(String n){…..

 To add a slider to the UI:
 Specify name of slider, min, max, initial values, and method to call
 (must be a method with one double parameter)
eg UI.addSlider("speed", 10, 50, 20, this::setSpeed););
 public void setSpeed(double v){…..

Go

name:
 Jason

10 50

© Mohammad Nekooei and Peter Andreae

COMP102: 6
PuppetMaster

Smile

Frown

Right

Walk

Speak

Distance

Left

© Mohammad Nekooei and Peter Andreae

COMP102: 7
PuppetMaster: setting up Buttons etc

public class PuppetMaster … {
// fields

/** set up the GUI */
public void setupGUI (){

UI.addButton("Smile", this::doSmile);
UI.addButton("Frown", this::doFrown);
UI.addButton("Left", this::doLeft);
UI.addButton("Right", this::doRight);
UI.addTextField("Say", this::doSpeak);
UI.addButton("Walk", this::doWalk);
UI.addSlider("Distance", 1, 100, 20, this::setDist);

…
}
// methods to respond

public static void main (String[] args){
new PuppetMaster().setupGUI();

}

Smile

Frown

Say

Left

Right

Walk

Distance
1 100

© Mohammad Nekooei and Peter Andreae

COMP102: 8
Responding to buttons and textFields

public class PuppetMaster {
public void doSmile(){

// tell the CartoonCharacter to smile
}
public void doFrown(){

// tell the CartoonCharacter to frown
}
public void doSpeak(String words){

// tell the CartoonCharacter to say the words
}
public void setDist(double value){

// remember the value
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);
UI.addButton("Frown", this::doFrown); …..
UI.addTextField(“Say", this::doSpeak);
UI.addSlider("Distance", 1, 100, 20, this::setDist);

}

A method called by a button
must have no parameters

Methods called by buttons
must have no parameters

Methods called by a textField
must have one String parameter

Methods called by a slider
must have one double parameter

© Mohammad Nekooei and Peter Andreae

COMP102: 9
Event driven input and fields
 Each event will make a new method call.
  can't remember anything between events in local variables in the methods.

 Typically, need fields in the object to remember information between events.

 eg: PuppetMaster has to remember the CartoonCharacter object in a field

© Mohammad Nekooei and Peter Andreae

COMP102: 10
PuppetMaster: Design

Structure of the PuppetMaster class:

public class PuppetMaster {

// fields to store values between events/method calls
private ….

// set up GUI
public void setupGUI() {

// set up the buttons, slider, textField, to call methods on the object
}

// methods to respond to the buttons, slider, textField
public void …

public static void main (String[] args){
// make a PuppetMaster object and call setupGUI

}

© Mohammad Nekooei and Peter Andreae

COMP102: 11
PuppetMaster: Using Fields

Actions on the CartoonCharacter happen in response to different events
⇒ will be in different method calls
⇒ need to store character in a field, not a local variable.

public class PuppetMaster{
// fields
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

public void doSmile(){
this.cc.smile();

}
public void doFrown(){

this.cc.frown();
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);
UI.addButton("Frown", this::doFrown);

⋮
}

© Mohammad Nekooei and Peter Andreae

COMP102: 12
PuppetMaster: TextFields (boxes)

public class PuppetMaster{
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

public void doSmile(){
this.cc.smile();

}
 :

public void doSpeak(String words){
this.cc.speak(words);

}

public void setupGUI(){
UI.addButton("Smile", this::doSmile);
UI.addButton("Frown", this::doFrown);

UI.addTextField(“Say", this::doSpeak);
}

© Mohammad Nekooei and Peter Andreae

COMP102: 13
PuppetMaster: Sliders

public class PuppetMaster {
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");
private double walkDist = 20 ;

public void doWalk() {
this.cc.walk(this.walkDist);

}
public void setDist(double value){

this.walkDist = value;
}
public void setupGUI(){

UI.addButton("Smile", this::doSmile);
UI.addButton("Frown", this::doFrown);

:
UI.addButton(“Walk", this::doWalk);
UI.addSlider("Distance", 1, 100, 20, this::setDist);

}
:

Typical design:
 field to store value
 from one event,
 for use by another event

A method called by
a slider must have
one double parameter

© Mohammad Nekooei and Peter Andreae

COMP102: 14
PuppetMaster: Using Fields

Listeners in the buttons etc don't have to call methods on this or UI:

public class PuppetMaster{
// fields
private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");
// constructor
public void setupGUI(){

UI.addButton("Smile", cc::smile); // call smile on the cc object, directly
UI.addButton("Frown", cc::frown);

:
}
public void doSmile(){

this.cc.smile();
}
public void doFrown(){

this.cc.frown();
}

this::doSmile);
this::doFrown);

© Mohammad Nekooei and Peter Andreae

COMP102: 15
GUI: Mouse input
 Just like buttons, except don’t have to put anything on screen

 Each press / release / click on the graphics pane will be an event
 Must tell UI the listener: the object::method to call when a mouse event occurs

UI.setMouseListener(game::doMouse);
 Must define method to say how to respond to the mouse.

parameters: kind of mouse event and position of mouse event
public void doMouse(String action, double x, double y) {

if (action.equals("pressed")) {
// what to do if mouse button is pressed

}
else if (action.equals("released")) {

// what to do if mouse button is released
}
else if (action.equals("clicked")) {

// what to do if mouse button is clicked
}

}

where action
occurred

press-release
in same place

© Mohammad Nekooei and Peter Andreae

COMP102: 16
Using the mouse.
 Want to let user specify input with the mouse,

 eg: drawing lines

 Typical pattern:
 On "pressed",

 just remember the position

 On "released",
 do something with remembered position and new position

1

2

(100,80)
(260,90)

© Mohammad Nekooei and Peter Andreae

COMP102: 17
Mouse Input

public class LineDrawer { /**Let user draw lines on graphics pane with the mouse. */
private double startX, startY; // fields to remember “pressed” position
public void setupGUI(){

UI.setLineWidth(10);
UI.setMouseListener(this::doMouse);
UI.setDivider(0.0);

}

public void doMouse(String action, double x, double y) {
if (action.equals("pressed")) {

this.startX = x;
this.startY = y;

}
else if (action.equals("released")) {

UI.drawLine(this.startX, this.startY, x, y);
}

}

© Mohammad Nekooei and Peter Andreae

COMP102: 18
Mouse Input
Simple mouse events: UI.setMouseListener(this::doMouse);
 pressed
 released
 clicked

Mouse movement: UI.setMouseMotionListener(this::doMouse);
 pressed, released, clicked
 dragged
 moved

© Mohammad Nekooei and Peter Andreae

COMP102: 19
Selecting Colors: JColorChooser

public class LineDrawer {
private double startX, startY; // fields to remember “pressed” position
private Color currentColor = Color.black;

public void doMouse(String action, double x, double y) {
if (action.equals("pressed")) { this.startX = x; this.startY = y; }
else if (action.equals("released")) { UI.drawLine(this.startX, this.startY, x, y); }

}
public void doChooseColour(){

this.currentColor = JColorChooser.showDialog(null, "Choose Color", this.currentColor);
UI.setColor(this.currentColor);

}
public static void main(String[] args){

UI.setLineWidth(10);
LineDrawer drawer = new LineDrawer();
UI.setMouseListener(drawer::doMouse);
UI.addButton("Color", drawer::doChooseColour);

}

© Mohammad Nekooei and Peter Andreae

COMP102: 20
Numbers program
 Program for constructing files of numbers:

 Allow user to select a new file
 Allow user to enter a set of numbers with the mouse (height of mouse click is the number)
 Display numbers as bar chart and list in text pane
 Save numbers to the file as they are entered

 User Interface:
 Button to clear screen and select new file.
 Graphics pane to select (with mouse)

and display the numbers
 Text pane to display list of numbers

130
72
281
98
264
97

Numbers

NewFile

© Mohammad Nekooei and Peter Andreae

COMP102: 21
Numbers: Design
 Design:

 When does something happen?
 button presses
 mouse clicks

 Fields
 to store the file (PrintStream) that the numbers are being saved to
 to remember the horizontal position of the next bar.

 Methods to respond to mouse
 record a new number

 Method to respond to button
 clear and start a new file

 main method
 create object
 set up the interface

Numbers

NewFile

© Mohammad Nekooei and Peter Andreae

COMP102: 22
Numbers: Design

public class Numbers {
private PrintStream output;
private double barX = 0;
private static final double BASE= 450;

public void doNew() {…

public void doMouse(…

public static void main(String[] args){
Numbers num = new Numbers();
UI.setMouseListener(num::doMouse);
UI.addButton("NewFile", num::doNewFile);
UI.drawLine(0, BASE, 600, BASE);

}
}

Numbers

NewFile

© Mohammad Nekooei and Peter Andreae

COMP102: 23
Respond to Mouse:
 When user clicks/releases:

 work out the number they meant
 draw a bar on the graphics pane
 display it in the text pane
 print it to the file

public void doMouse(String action, double x, double y) {
if (action.equals("released")) {

double number = BASE - y;
this.barX = this.barX + 10;
UI.fillRect(this.barX, y, 5, number);
UI.println(number);
this.output.println(number);

}
}

130
Numbers

NewFile

if (this.outputFile != null) {
this.outputFile.println(number);

 }

What's the
problem?

© Mohammad Nekooei and Peter Andreae

COMP102: 24
Respond to "NewFile" button

public void doNewFile(){
UI.clearPanes();
UI.drawLine(0, BASE, 600, BASE);
this.barX = 0;
this.output.close();
try{

this.output = new PrintStream(UIFileChooser.save());
} catch(IOException e) { UI.println("File error: "+e); }

}

if (this.output != null) {
this.output.close();
 }

Still a
problem!

© Mohammad Nekooei and Peter Andreae

COMP102: 25
GUI design: choosing object to act on

Suppose we have two characters!

Problem:
 Which character should smile/turn/walk/speak?

 Event-driven input can be tricky!

Smile

Frown

Speak

Distance

Left

Right

Walk

© Mohammad Nekooei and Peter Andreae

COMP102: 26
GUI design: choosing object to act on
 One typical simple GUI interaction mechanism

1. Select object you want to act on
2.Choose action.

 Must remember the currently selected object:
 in a field, because the action will be performed in a later method

this.selectedCC = cc1;

 Typically, the “selected object” doesn’t change until user
selects another object.

© Mohammad Nekooei and Peter Andreae

COMP102: 27
PuppetMaster: two characters

Smile

Frown

Speak

Distance

Walk

CartoonCharacter-11

emotion: "smile"figX: 110

figY: 200 direction: "right"

imgBaseName: "blue"

CartoonCharacter-12

emotion: "frown"figX: 350

figY: 200 direction: "left"

imgBaseName: "green"

PuppetMaster-3

fields:

walkDistance: 20

cc1: CartoonCharacter-11

cc2: CartoonCharacter-12

selectedCC: CartoonCharacter-11CartoonCharacter-12

