
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 195

Designing equals/compareTo/hashCode
The methods should depend

• on fields that are sufficient to identify the entity represented by an object and
distinguish it from other entities

• only on fields that will not be changed over time
• (nice if the fields are declared final – so they can't be changed.)

If there are no such fields (eg, they might all change over time), or
Every time you create a new object of this type it should be considered unique
Then:

• use the default equals and hashCode which use the object reference/ID/pointer

• compareTo probably doesn't make sense.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Comparable Objects

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 197

Making Classes usable with Collections
• Making a class Comparable makes it easier to use with sort, TreeSet, TreeMap,…

• There are other methods that may also be needed to make your class easy to use:
• compareTo(…) [to make it Comparable]

• toString() [to make it easy to print out objects]

• equals(…) [to make everything work,
needed if two different objects could be considered to be the same,
like Strings]

• hashCode() [to make HashSet and HashMap work]

• Part of making user-defined Classes usable with Collections
• Note: compareTo, equals, and hashCode should be consistent!

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 198

Potential problem with equals(…)
public class MyClass {

private int number;

//equals is not overridden
}

MyClass c1 =
MyClass c2 =
MyClass c3 =

Heap Memory

Stack number = 10
id: 101

number = 35
id: 102

number = 10
id: 103

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 199

Potential problem with equals(…)
Default equals() checks id of objects. Not the value(s) stored within the object.

MyClass c1 =
MyClass c2 =
MyClass c3 =

Heap Memory

Stack number = 10
id: 101

number = 35
id: 102

number = 10
id: 103

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 200

public boolean equals(Object obj){…
• Standard way to override the equals method:

• Check if obj is the same object as this. true
• Check if obj is null false
• Check if obj is the same type false if not
• Cast obj to this type
• Check if the fields are the same

public class AClass{
.
.
public boolean equals(Object obj){

if (this==obj) { return true; }
if (obj == null) { return false; }
if (! obj instanceof AClass) { return false; }
AClass other = (AClass) obj;
// check if field values are the same
return (this.number==other.number && this.n.equals(other.n) && …) ;

}
}

AClass c1 =

AClass c2 =

Aclass c3 =

Heap Memory

Stack
number = 10

id: 101

number = 35

id: 102

number = 10

id: 103

Bclass b3 =

number = 10

id: 104

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 201

public boolean equals(Object obj){…
• Equals for Course class

• identity based on
private String courseCode; (but not on lecturer, room, timetable, …)
private int year;
private String trimester;

public boolean equals(Object obj){
if (this==obj) { return true; }
if (obj == null) { return false; }
if (! obj instanceof Course) { return false; }
Course other = (Course) obj;
return (this.courseCode.equals(other.courseCode) &&

this.year==other.year &&
this.trimester.equals(other.trimester)) ;

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 202

Computing Hash Codes

“Wish list” for a hashCode() method:
• Must produce an integer

• Should take account of all components of the object relevant to
identity

• Must be consistent with equals()
• two items that are equal must have the same hash value

• Should distribute the hash codes evenly through the range
• minimises collisions

• Should be fast to compute

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 203

A Simple Hash Function for Strings
• We could add up the ascii codes of all the characters:

private int hashCode(String value) {
int hash = 0;

for (int i = 0; i < value.length(); i++)
hash += value.charAt(i);

return hash;
}

Why is this not very good?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 204Example: Hashing course codes
418 ← DEAF101
419 ← DEAF102 DEAF201

⋮
429 ← BBSC201 MDIA101
430 ← ECHI410 MDIA102 MDIA201
431 ← ECHI303 JAPA111 JAPA201 MDIA202 MDIA220 MDIA301
432 ← ARCH101 ASIA101 BBSC231 BBSC303 BBSC321 CHEM201 ECHI403 ECHI412

JAPA112 JAPA211 JAPA301 MDIA203 MDIA302 MDIA320
⋮

450 ← ANTH412 ARCH389 ARTH111 BIOL228 BIOL327 BIOL372 CHEM489 COML304
COML403 COML421 COMP102 COMP201 CRIM313 CRIM421 DESN215 DESN233
ECON328 ECON409 ECON418 ECON508 EDUC449 EDUC458 EDUC548 EDUC557
ENGL228 ENGL408 ENGL426 ENGL435 ENGL444 ENGL453 FREN124 FREN331
FREN403 FREN412 GEOL362 GEOL407 GERM214 GERM403 GERM412 INFO213
INFO312 INFO402 ITAL206 ITAL215 LALS501 LATI404 LING224 LING323
LING404 MAOR102 MARK304 MARK403 MATH206 MATH314 MATH323 MATH431
MOFI403 PHIL104 PHIL203 PHIL302 PHIL320 PHIL401 PHIL410 RELI321 RELI411
SAMO101

⋮

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 205

Better Hash Functions
• Make the contribution of each component depend on its position:

public class CourseOffering{
private final String courseCode;
private final int year;
private final char trimester;
private … // other fields for timetable, coordinator, …..

/** hash code depends on the course code, the year, and the trimester */
public int hashCode() {

int prime = 104417;
int hash = year;
for (int i = 0; i < courseCode.length(); i++)

hash = hash * prime + courseCode.charAt(i);
hash = hash * prime + trimester;
return hash;

}

…

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Queues

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 207

Queues
• Collection of items in order

• like Lists and Stacks

• Main operations:
• enqueue: put item on the queue
• dequeue: remove item from front of the queue

• These operations should be efficient.
• Shouldn’t get much more expensive if the queue is very large

• A Queue is a Collection:
• THEREFORE: other operations – contains(…), remove(…), etc – also work

BUT, they not be efficient.

enqueue/offer/add

dequeue/poll/remove

peek

Frontback

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 208

Queue operations
• isEmpty(),
• size(),
• clear()

• offer(E item) enqueue
• add(E item) enqueue

• poll() → E dequeue (returns null if queue is empty)
• remove() → E dequeue (throws exception if queue is empty)

• peek() → E look at front (returns null if queue is empty)
• element() → E look at front (throws exception if queue empty)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 209

Queues and efficiency
• The main operators of queues should be efficient.

• the time it take to do them should be fast
• especially important when they grow in size <= a constant speed is needed!

• Let’s investigate how stacks can be implemented efficiently.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 210

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:
push/add ‘e’

head

Q w K r s Q q u s z Z v V p

stack.size()+1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 211

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:

• No changes to the stack other than an ’e’ was added at the end.

head

Q w K r s Q q u s z Z v V p e

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 212

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:

• Again only the end changes, nothing else
• push and pop at the end O(1)

• Stacks are naturally efficient with an ArrayList!

returns ‘e’
stack size -1

pop/remove

head

Q w K r s Q q u s z Z v V p

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 213

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast O(1)

enqueue/offer/add

dequeue/poll/removeheadtail
F r r j T a Q r

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 214

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast O(1)
• Enqueue requires shifting every item up one place to add

• It “costs” the current length (n) to move O(n)

enqueue/offer/add ‘m’

dequeue/poll/removeheadtail
F r r j T a Q r

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 215

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast O(1)
• Enqueue requires shifting every item up one place to add

• It “costs” the current length (n) to move O(n)

enqueue/offer/add

dequeue/poll/removeheadtail
F r r j T a Q rm

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 216

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast O(1)

enqueue/offer/add

dequeue/poll/remove
head tail

f F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 217

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast O(1)
• Dequeue requires shifting every item down one place O(n)

enqueue/offer/add

dequeue/poll/remove
head tail

f F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 218

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast O(1)
• Dequeue requires shifting every item down one place O(n)

• Big Oh notation:
• O(1) : fixed number of steps, regardless of how big the collection is
• O(n) : number of steps proportional to the size of the collection.

enqueue/offer/add

dequeue/poll/remove
head tail

F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 219

Queues and efficiency
• Using an array and two indexes:

• Enqueue:
• Get tail
• tail++
• Add new value at new tail

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 220

Queues and efficiency
• Using an array and two indexes:

• Enqueue:
• Get tail
• tail++
• Add new value at new tail

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g Q

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 221

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast O(1)
• Dequeue:

• Return value at head
• head++

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g Q

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 222

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast O(1)
• Dequeue:

• Return value at head
• head++

enqueue/offer/add

dequeue/poll/remove
head tail

s T o g Q

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 223

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast O(1)
• Dequeue is fast O(1)

enqueue/offer/add

dequeue/poll/remove
head tail

s T o g Q

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 224

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast O(1)
• Dequeue is fast O(1)

• What about space? (memory)

enqueue/offer/add

dequeue/poll/remove
head tail

P X z 4 l “

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 225

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast O(1)
• Dequeue is fast O(1)

• What about space? (memory)
• “Wrap around” at the end;

A
dequeue/poll/remove

head: 9 tail: 1

f

0

A

1 2 3 4 5 6 7 8

P

9

X

10

Z

11

4

12

I

13

“

14

enqueue/offer/add

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 226

Java Implementations
• Java classes for Queue:

• ArrayDeque Queue<Patient> waitingRoom = new ArrayDeque<Patient>();
• LinkedList

• ArrayDeque is actually a kind of Deque – an extension of Queue:
• Deque = Double Ended Queue
• Add or remove at either end.
• Includes Stacks and Queue

• offer(e) = offerLast(e)
• push(e) = offerFirst(e)
• poll() = pop() = pollFirst()
• - = pollLast()
• peek() = peekFirst()
• - = peekLast()

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Priority Queues

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 228

Priority Queues
• Priority Queues

• Items ordered by priority, instead of arrival order
• dequeue/poll highest priority item (earliest in the ordering

enqueue/offer/add

dequeue/poll/remove
head

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 229

Priority Queues: ordering
Ordering:

• Highest priority = earliest in ordering.
• Typically high priority = 1, low priority = 10 (large number)

Specify ordering like with Collections.sort():
either

• use natural ordering of the items using compareTo (if they are Comparable)
Queue<Patient> waitingRoom = new PriorityQueue<Patient>();

or
• give the Priority Queue a compare(…) function when created:
Queue<Patient> waitingRoom =

new PriorityQueue<Patient>((Patient p1, Patient p2) ->{
if (p1.getPri()>p2.getPri()){ return -1:} else if (p1 … });

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 230

Applications of Queues and PriorityQueues
Many applications! (and many specialised Queue classes)

• Operating Systems, Network Applications, Multi-User Systems
• Handling requests/events/jobs that must be done in order
• (often called a “buffer” in this context)

• Simulations
• Representing queues in the real world (traffic, customers, deliveries, ….)
• Managing the events that must happen in the future

• Programs to control delivery of orders or manage customers/clients

• Search Algorithms
• breadth-first search
• breadth-first search

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 231

Simulation
• Tick-based simulation

• Time is discrete
• Main loop advances time by one tick for each iteration
• Each tick, update the state of every entity in the world by one tick
• Efficient if every entity changes every tick;

May be inefficient if not very much happens most of the time
• Often used in games

time++

updateWorld

update Entity 1

update Entity 2

update Entity n

World

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 232

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 302

Doctor’s office:
Laila (3 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 233

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 303

Doctor’s office:
Laila (3 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 234

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 303

Doctor’s office:
Laila (2 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 235

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 303

Doctor’s office:
Laila (2 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana

Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 236

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 303

Doctor’s office:
Laila (2 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 237

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 304

Doctor’s office:
Laila (2 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 238

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 304

Doctor’s office:
Laila (1 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 239

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 305

Doctor’s office:
Laila (1 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 240

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 305

Doctor’s office:
Laila (0 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 241

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 305

Doctor’s office:
Laila (0 ticks)

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 242

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 305

Doctor’s office:

#1: Kurt
#2: Liz
#3: Allan
#4: Mo
#5: Moana
#6: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 243

Simulation of Queues
• Doctor’s waiting room

time++

updateWorld

World: time 305

Doctor’s office:
Kurt (15 ticks)

#1: Liz
#2: Allan
#3: Mo
#4: Moana
#5: Miriam

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 244

Simulation
• Event-based simulation

• Keep a (priority) queue of all the events that are going to happen
• Each iteration of the main loop

• takes the first event off the queue,
• updates all entities affected by the event,
• adds new events to the queue for each future consequence/effect of this event.

• More efficient if most entities don’t change most of the time
but conceptually more complicated

	Designing equals/compareTo/hashCode
	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Comparable Objects
	Making Classes usable with Collections
	Potential problem with equals(…)
	Potential problem with equals(…)
	public boolean equals(Object obj){…
	public boolean equals(Object obj){…
	Computing Hash Codes
	A Simple Hash Function for Strings
	Example: Hashing course codes
	Better Hash Functions
	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Queues
	Queues
	Queue operations
	Queues and efficiency
	Stacks and efficiency
	Stacks and efficiency
	Stacks and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Queues and efficiency
	Java Implementations
	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Priority Queues
	Priority Queues
	Priority Queues: ordering
	Applications of Queues and PriorityQueues
	Simulation
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation of Queues
	Simulation

