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Problem Solving / Algorithm Design
A Key principle of problem solving:
• Break problems up into smaller chunks to solve independently

EG: Iteration:
• To do something to lots of items:

• work out how to do it to a “typical” item
• put it in a loop
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Algorithm design using iteration

public void drawBubbles(double x, double y, int n){
for (int i = 0; i<n; i++ ) {

this.drawBubble(x, y, 15);
y = y - 20;

}
}

public void drawBubble(double x, double y, double size){
UI.setColor(Color.blue);
UI.fillOval(x, y, size, size);

}
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Algorithm Design with Recursion
Break up a problem into “the first” and “the rest”
• where “the rest” is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){

// draw one bubble
this.drawBubble(x, y, 15);

// if there are any remaining bubbles
if ( n > 1 )   {

// draw them
this.drawBubbles(x, y-20, n-1);

}
}

Recursive call

Must have condition 
to prevent infinite 
recursion:
Need a “Base case” 
with no recursive call

x, y, 8

x, y-20, 7

x, y-40, 6

x, y-60, 5

x, y-80, 4

x, y-100, 3

x, y-120, 2

x, y-140, 1
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Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){
if ( n == 1 )   {

this.drawBubble(x, y, 15);
}
else if ( n > 1 )   {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4
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Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){
if ( n == 1 )   {

this.drawBubble(x, y, 15);
}
else if ( n > 1 )   {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4

x, y, 2

x, y-40, 2

x, y-80, 2

x, y-120, 2

x, y, 1

x, y-20, 1

x, y-40, 1

x, y-60, 1

x, y-80, 1

x, y-100, 1

x, y-120, 1

x, y-140, 1
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Recursion vs Iteration
• Iteration:

• break problem into sequence of the typical case
• identify the typical case  (body)
• identify the increment to step to the next case
• identify the keep-going or stopping condition
• identify the initialisation

• Recursion:  (simple)
• break problem into  first and  rest
• identify the first case
• identify the recursive call for the rest

• work out the arguments for the rest
• identify when you should do the recursive call.

• make sure there is a stopping case (base case)
• may need a wrapper method to initialise
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“first” might be split in multiple parts
• Example:  Print an “onion” :   ( ( ( ( ( ( ( ) ) ) ) ) ) )

public void onion (int layers){
UI.print( “ (“ );
if (layers > 1)  {  this.onion(layers-1); }
UI.print( “ )“ );

}

open 

close 

do the inside 
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Recursion at work
onion(4) ⇒

public void onion (int layers){
UI.print( “(“ );
if (layers > 1)  { this.onion(layers-1); }
UI.print( “)“ );

}

public void onion (int layers){
UI.print( “(“ );
if (layers > 1) { this.onion(layers-1); }
UI.print( “)“ );

}

4 .
✔
✔
✔

( ( ( ( ) ) ) )

public void onion (int layers){
UI.print( “(“ );
if (layers > 1) { this.onion(layers-1); }
UI.print( “)“ );

}

3 .
✔
✔
✔

public void onion (int layers){
UI.print( “(“ );
if (layers > 1) { this.onion(layers-1); }
UI.print( “)“ );

}

2 .
✔
✔
✔

public void onion (int layers){
UI.print( “(“ );
if (layers > 1) { this.onion(layers-1);}
UI.print( “)“ );

}

1 .
✔
✔
✔
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Recursion and Fractals
• Fractals are geometric patterns with repeated structure at multiple levels:

Simple examples:
• Fractal Line

• Sierpinski Triangle

Sierpinski triangle image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license (https://creativecommons.org/licenses/by-sa/3.0/deed.en). 
Attribution: Beojan Stanislaus

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Multiple Recursion
• “Pouring” Paint in a painting program:

• colour this pixel
• spread to each of the neighbour pixels

• colour the pixel
• spread to its neighbours

• colour the pixel 
• spread to its neighbours

• … 
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Spreading Paint
private int ROWS = 25;
private int COLS = 35;
private Color[ ][ ] grid = new Color[ROWS][COLS];    // the grid of colours,

/** Spread new colour in place of oldColour on this cell and all its adjacent cells*/
public void spread(int row, int col, Color newColour, Color oldColour){

if (row<0 || row>=ROWS || col<0 || col >=COLS) { return; }
if ( ! grid[row][col].equals(oldColour) ) { return; }
setPixel(row, col, newColour);
spread(row-1, col, oldColour, newColor);
spread(row+1, col, oldColour, newColor);
spread(row, col-1, oldColour, newColor);
spread(row, col+1, oldColour, newColor);

}
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Recursion that returns a value.
• What if the method returns a value?

⇒ get value from recursive call, then do something with it
typically,  perform computation on value, then return answer.

• Compound interest
• value at end of n th year = 

value at end of previous year  * (1 +  interest).

value(deposit, year)  =  deposit   [if  year is 0]
=   value(deposit, year-1) * (1+rate) 
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Recursion returning a value
/** Compute compound interest of a deposit */

public double compound(double deposit, double rate, int years){
if (years == 0)

return deposit;
else

return ( this.compound(deposit, rate, years-1) * (1 + rate) );
}

alternative :
public double compound(double deposit, double rate, int years){

if (years == 0)
return deposit;

else {
double prev = this.compound(deposit, rate, years-1);
return prev * (1 + rate); 

}
}
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Recursion with return: execution
public double investment(double deposit, double rate, int year){

if (year == 0)  {   return deposit;   }
else {   

double prev = this.investment(deposit, rate, year-1); ← step 1
return prev * (1 + rate); ← step 2
}     

}
investment(1000,  0.1,  4)

investment(1000,  0.1,  3)    *    1.1

investment(1000,  0.1,  2)     *   1.1

investment(1000,  0.1,  1)       *   1.1

investment(1000,  0.1,  0)    *   1.11000

1100

1210

1331

1464.1
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Recursion – An Example 
• How many ways are there to arrange n books in a line?
• This number is called n factorial and is usually written as n!
• Example: 3! = 3 * 2 * 1 = 6
• For any positive integer n it is defined as the product of all integers 

from 1 to n inclusive:
n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1  

• This definition can also be expressed recursively:
1! = 1
n! = n * (n-1)!

• That is, a factorial is defined in terms of another (smaller) factorial 
until the base case of 1! is reached

• Note: some mathematical formulas have a very elegant recursive 
definition
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Small exercise
• Can you find a way to calculate n! using recursion?

• n * (n-1) * (n-2) * ….. * 3 * 2 * 1 = n!
• Tip:

• Use the example as a template to solve it
• When do you know the answer without any further call (base solution)?
• What is the calculation of the current known value and the result of “the rest”
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Factorial – Using Iteration
public int fact(int n){

int result = 1;
for (int i = 1; i<=n; i++ ) {

result *= i;
}
return result;

}

UI.println(fact(5));

120



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 269

Factorial – Using Recursion
public int fact(int n){

if (n == 1) return 1;

return n * fact(n-1);
}

//The runtime system creates a stack of results
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