
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Algorithms: recursion

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 251

Problem Solving / Algorithm Design
A Key principle of problem solving:
• Break problems up into smaller chunks to solve independently

EG: Iteration:
• To do something to lots of items:

• work out how to do it to a “typical” item
• put it in a loop

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 252

Algorithm design using iteration

public void drawBubbles(double x, double y, int n){
for (int i = 0; i<n; i++) {

this.drawBubble(x, y, 15);
y = y - 20;

}
}

public void drawBubble(double x, double y, double size){
UI.setColor(Color.blue);
UI.fillOval(x, y, size, size);

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 253

Algorithm Design with Recursion
Break up a problem into “the first” and “the rest”
• where “the rest” is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){

// draw one bubble
this.drawBubble(x, y, 15);

// if there are any remaining bubbles
if (n > 1) {

// draw them
this.drawBubbles(x, y-20, n-1);

}
}

Recursive call

Must have condition
to prevent infinite
recursion:
Need a “Base case”
with no recursive call

x, y, 8

x, y-20, 7

x, y-40, 6

x, y-60, 5

x, y-80, 4

x, y-100, 3

x, y-120, 2

x, y-140, 1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 254

Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){
if (n == 1) {

this.drawBubble(x, y, 15);
}
else if (n > 1) {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 255

Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

•  can use the same method:

public void drawBubbles(double x, double y, int n){
if (n == 1) {

this.drawBubble(x, y, 15);
}
else if (n > 1) {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4

x, y, 2

x, y-40, 2

x, y-80, 2

x, y-120, 2

x, y, 1

x, y-20, 1

x, y-40, 1

x, y-60, 1

x, y-80, 1

x, y-100, 1

x, y-120, 1

x, y-140, 1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 257

Recursion vs Iteration
• Iteration:

• break problem into sequence of the typical case
• identify the typical case (body)
• identify the increment to step to the next case
• identify the keep-going or stopping condition
• identify the initialisation

• Recursion: (simple)
• break problem into first and rest
• identify the first case
• identify the recursive call for the rest

• work out the arguments for the rest
• identify when you should do the recursive call.

• make sure there is a stopping case (base case)
• may need a wrapper method to initialise

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 258

“first” might be split in multiple parts
• Example: Print an “onion” : ((((((()))))))

public void onion (int layers){
UI.print(“ (“);
if (layers > 1) { this.onion(layers-1); }
UI.print(“)“);

}

open

close

do the inside

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 259

Recursion at work
onion(4) ⇒

public void onion (int layers){
UI.print(“(“);
if (layers > 1) { this.onion(layers-1); }
UI.print(“)“);

}

public void onion (int layers){
UI.print(“(“);
if (layers > 1) { this.onion(layers-1); }
UI.print(“)“);

}

4 .
✔
✔
✔

(((())))

public void onion (int layers){
UI.print(“(“);
if (layers > 1) { this.onion(layers-1); }
UI.print(“)“);

}

3 .
✔
✔
✔

public void onion (int layers){
UI.print(“(“);
if (layers > 1) { this.onion(layers-1); }
UI.print(“)“);

}

2 .
✔
✔
✔

public void onion (int layers){
UI.print(“(“);
if (layers > 1) { this.onion(layers-1);}
UI.print(“)“);

}

1 .
✔
✔
✔

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 260

Recursion and Fractals
• Fractals are geometric patterns with repeated structure at multiple levels:

Simple examples:
• Fractal Line

• Sierpinski Triangle

Sierpinski triangle image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license (https://creativecommons.org/licenses/by-sa/3.0/deed.en).
Attribution: Beojan Stanislaus

https://creativecommons.org/licenses/by-sa/3.0/deed.en

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 261

Multiple Recursion
• “Pouring” Paint in a painting program:

• colour this pixel
• spread to each of the neighbour pixels

• colour the pixel
• spread to its neighbours

• colour the pixel
• spread to its neighbours

• …

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 262

Spreading Paint
private int ROWS = 25;
private int COLS = 35;
private Color[][] grid = new Color[ROWS][COLS]; // the grid of colours,

/** Spread new colour in place of oldColour on this cell and all its adjacent cells*/
public void spread(int row, int col, Color newColour, Color oldColour){

if (row<0 || row>=ROWS || col<0 || col >=COLS) { return; }
if (! grid[row][col].equals(oldColour)) { return; }
setPixel(row, col, newColour);
spread(row-1, col, oldColour, newColor);
spread(row+1, col, oldColour, newColor);
spread(row, col-1, oldColour, newColor);
spread(row, col+1, oldColour, newColor);

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 263

Recursion that returns a value.
• What if the method returns a value?

⇒ get value from recursive call, then do something with it
typically, perform computation on value, then return answer.

• Compound interest
• value at end of n th year =

value at end of previous year * (1 + interest).

value(deposit, year) = deposit [if year is 0]
= value(deposit, year-1) * (1+rate)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 264

Recursion returning a value
/** Compute compound interest of a deposit */

public double compound(double deposit, double rate, int years){
if (years == 0)

return deposit;
else

return (this.compound(deposit, rate, years-1) * (1 + rate));
}

alternative :
public double compound(double deposit, double rate, int years){

if (years == 0)
return deposit;

else {
double prev = this.compound(deposit, rate, years-1);
return prev * (1 + rate);

}
}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 265

Recursion with return: execution
public double investment(double deposit, double rate, int year){

if (year == 0) { return deposit; }
else {

double prev = this.investment(deposit, rate, year-1); ← step 1
return prev * (1 + rate); ← step 2
}

}
investment(1000, 0.1, 4)

investment(1000, 0.1, 3) * 1.1

investment(1000, 0.1, 2) * 1.1

investment(1000, 0.1, 1) * 1.1

investment(1000, 0.1, 0) * 1.11000

1100

1210

1331

1464.1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 266

Recursion – An Example
• How many ways are there to arrange n books in a line?
• This number is called n factorial and is usually written as n!
• Example: 3! = 3 * 2 * 1 = 6
• For any positive integer n it is defined as the product of all integers

from 1 to n inclusive:
n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1

• This definition can also be expressed recursively:
1! = 1
n! = n * (n-1)!

• That is, a factorial is defined in terms of another (smaller) factorial
until the base case of 1! is reached

• Note: some mathematical formulas have a very elegant recursive
definition

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 267

Small exercise
• Can you find a way to calculate n! using recursion?

• n * (n-1) * (n-2) * ….. * 3 * 2 * 1 = n!
• Tip:

• Use the example as a template to solve it
• When do you know the answer without any further call (base solution)?
• What is the calculation of the current known value and the result of “the rest”

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 268

Factorial – Using Iteration
public int fact(int n){

int result = 1;
for (int i = 1; i<=n; i++) {

result *= i;
}
return result;

}

UI.println(fact(5));

120

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 269

Factorial – Using Recursion
public int fact(int n){

if (n == 1) return 1;

return n * fact(n-1);
}

//The runtime system creates a stack of results

	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Algorithms: recursion
	Problem Solving / Algorithm Design
	Algorithm design using iteration
	Algorithm Design with Recursion
	Algorithm Design with Recursion
	Algorithm Design with Recursion
	Recursion vs Iteration
	“first” might be split in multiple parts
	Recursion at work
	Recursion and Fractals
	Multiple Recursion
	Spreading Paint
	Recursion that returns a value.
	Recursion returning a value
	Recursion with return: execution
	Recursion – An Example
	Small exercise
	Factorial – Using Iteration
	Factorial – Using Recursion

