Data Structures and Algorithms XMUT-COMP 103 - 2024 T1 Recursion and Algorithm Complexity

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Assignment 3

- Hospital simulation
 - Tick based simulation
 - Queues, priorityqueues, sets, lists of queues, maps,....
- MineSweeper
 - recursion!

MedicalCenter

Aside: Priority Queues

- Why aren't the Patients in priority order when waiting in the queue?
- Note:
 - The front item in the priority queue is always the highest priority.
 - Higher priority items tend to be closer to the front.
 - But they aren't kept in exact order.

Treating Patients	Waiting Queues
X-ray	

 Priority Queues keep the items in a partially ordered tree structure ⇒ more efficient to add and remove items [O(log n) instead of O(n)] more details later in the course.

Analysing Costs (in general)

How can we determine the costs of a program?

• Time:

- Run the **program** and count the milliseconds/minutes/days.
- Count number of steps/operations the algorithm will take.

Space:

- Measure the amount of memory the program occupies.
- Count the number of elementary data items the **algorithm** stores.
- Applies to Programs or Algorithms? Both.
 - programs → "benchmarking"
 - algorithms → "analysis"

What is a good algorithm?

Obviously needs to do what is expected consistently. However most problems can be solved in many ways. What is most important?

- Clarity easy to read/implement
- Efficiency the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm?

Benchmarking: program cost

Measure:

- actual programs, on real machines, with specific input
- measure elapsed time
 - System.currentTimeMillis ()
 - \rightarrow time from the system clock in milliseconds
- measure real memory usage

Problems:

- what input?
- other users/processes?
- which computer?

- ⇒ use large data sets don't include user input
- ⇒ minimise average over many runs
- \Rightarrow specify details
- how to compare cross-platform? ⇒ measure cost at an abstract level

Analysis: Algorithm "complexity"

- Abstract away from the details of
 - the hardware, the operating system
 - the programming language, the compiler
 - the specific input
- Measure number of "steps" as a function of the data size
 - best case (easy, but not interesting)
 - worst case (usually easy)
 - average case (harder)
- The precise number of steps is not required
 - 3.47 n² 67n + 53 steps
 - 3n log(n) + 5n 3 steps
- Rather, we are interested in how the cost grows with data size on large data

Big-O Notation

- "Asymptotic cost", or "big-O" cost describes how cost grows with large input size
- Only care about large input sets
 - Lower-order terms become insignificant for large n
- We care about how cost grows with input size
 - Don't care about constant factors
 - Multiplication factors (3, 102, 3 and 12 below) don't tell us how things "scale up"
 - Lower-order terms become insignificant for large n

```
3.47 n<sup>2</sup> + 102n + 10064 steps → O(n<sup>2</sup>)
3n log n + 12n steps → O(n log n)
```

How the different costs grow

Big-O classes

- Examples:
 - O(1) constant: cost is independent of n : Fixed cost!
 - Retrieve/insert in regular arrays, hashmap operations
 - O(log n) logarithmic: cost grows by 1, when n doubles : *almost constant*
 - Traversing a binary tree, some divide-conquer algorithms
 - O(n) linear: cost grows *linearly* with n :
 - Find a value in array, do something to all elements in an array, adding in the middle of ArrayList
 - O(n log n) log linear: cost grows a bit more than linear: Slow growth!
 - Good sorting algorithms (merge, quick, heap sort). Complex divide-conquer algorithms

Big-O classes

- Examples continued:
 - O(n²) quadratic: costs x 4 when n doubles: *limits problem size*
 - Do something to all elements in a 2d array. Nested loops
 - O(n^c), c>2 polynomial: *limits problem size even more*
 - Do something to all elements in a 3d array. Many nested loops
 - O(2ⁿ) exponential: costs doubles when n increases by 1: severely limits problem size
 - Route finding, e.g. travelling salesman problem
 - Super-exponential: e.g.O(n!) *don't even think about it...*

How the different costs grow

• For growing n, the costs grow slower or faster depending on the cost function

Manageable problem sizes

- How large can the data be?
 - Assume one step takes one microsecond (i.e., 10⁻⁶ sec) on the computer
 - Then the following problem sizes can be handled by an algorithm in a given Big-O class within a given time unit

Time	1 min	1 h	1 day	1 week	1 year	How much is 1 year ? about
O(n)	107	10 ⁹	1011	1012	10 ¹³	half a million se
O(n log n)	10 ⁶	10 ⁸	10 ⁹	1010	1012	
O(n ²)	104	10 ⁵	10 ⁵	10 ⁶	10 ⁷	
O(n ³)	10 ²	10 ³	10 ³	104	10 ⁴	
O(2 ⁿ)	25	31	36	39	44	

What is a "step"?

- Any important actions that are at the centre of the algorithm
 - comparing data
 - moving data
 - anything you consider to be "expensive"
 - Doesn't depend on size of data

```
public E remove (int index){
```

```
}
```

What's a step: Pragmatics

- Count the most expensive actions?
 - Adding 2 numbers is cheap
 - Raising to a power is not so cheap
 - Comparing 2 strings *may* be expensive
 - Reading a line from a file *may* be very expensive
 - Waiting for input from a user or another program may take forever...

- Remember the Big (O) picture
- Sometimes we need to know about how the underlying operations are implemented in the computer to choose well (NWEN241/342).

Costs of Standard Collection classes

- ArrayList: O(1): clear, add, set, remove from end:
 O(n): add, remove, contains, Collections.reverse, .shuffle
 O(n log(n)) Collections.sort,
- ArrayDeque: O(1): clear, push, pop, offer, poll, add/remove First/Last:
 O(n): contains, remove(obj)
- PriorityQueue: O(log(n)): offer, poll
- HashSet: O(1): add, remove, contains
- TreeSet: O(log(n)): add, remove, contains
- HashMap: O(1): clear, containsKey, put, get But depends on the cost of hashCode

Example Algorithms

- Finding the Mode of a set of numbers
- Shuffle a List
- Find combinations of items to fill a pallett
- Find permutations of letters to make words.
 - (fix the dictionary!)

Finding the Mode of a list

- Mean = total/count
- Median = middle value, separating top 50% from bottom 50%
- Mode = most frequent number.

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

Algorithm:

- set *mode* to the first number and *modeCount* to 1
- for each value in the list:
 - step through the list to count how many times value occurs in the list
 - if count > modeCount then set mode and modeCount to value and count

Mode: the bad way

Finding the Mode of a list faster

• Much easier to see if the list is sorted in order:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5,5,7,16,18,18,19,21,21,21,21,22,23,23,25,27,27,28,31,39,42,43,43,43,45,49

- Algorithm
 - sort the list
 - set mode to first number and modeCount to 1
 - set count to 1
 - step through the list from index 1
 - if the number is the same as the previous number, then increment count
 - else
 - if *count* > *modeCount*, then set *mode* and *modeCount* to previous value and *count*
 - reset count to 1
 - if *count* > *modeCount*, then set *mode* and *modeCount* to previous value and *count*

Finding the Mode of a list faster

- Analysis
- 1 × O(n log(n))
- 1 time × O(1)
- 1 time × O(1)

n times × O(1)

1 ... n times × O(1)

n ... 1 times × O(1)

n ... 1 times x O(1)

1 time x O(1)

- set *mode* and *modeCount* to previous number and *count* **n** ... 1 times O(1)
- reset count to 1

• if count > modeCount, then

- if count > modeCount, then
 - set mode and modeCount to previous value and count

Total: O(n log(n))

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Finding the Mode of a list even faster

• Count using a map to count without sorting:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5-2 7-1 16-1 18-2 19-1 21-4 22-1 23-2 25-1 27-2 28-1 31-1 39-1 42-1 43-3 45-1 49-1

Algorithm

What's the cost if there are *n* numbers?

- for each value in the list
 - if the value is in the map, then increment the associated count
 - else add the value to the map with an associated count of 1.
- for each key in map,
 - if associated count > modeCount, then set mode and modeCount to key and count

Finding the Mode of a list even faster

Algorithm	Analysis
for each value in the list	
• if the value is in map, then n x	containskey(key)
n times - • increment the associated count 1	.n x O(1) get() & put()
• else	
 add value to map with associated count =1. 	1 x O(1) put(key, 1)
• for each key in map, O(1	1) get all keys
n times - if associated count > modeCount, then n x	x O(1) get(key)
 set mode and modeCount to key and count 1 	

Total: O(n)

Shuffle a list

Given a list, put items into a random order

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

- For each position, grab a random item and put it in that position
 - add(position, remove(random))

VS

• swap [set(position, set(index, get(position))] or Collections.swap(...)

- Use the built-in shuffle!
 - Collections.shuffle(list)

Shuffle a list

Combinations

- Given a set of n packets of weights w₁, ..., w_n, and a shipping pallet/container/box that has size z
 - Example:

• Given the target z, what is the largest total weight <= z that can be achieved?

Combinations – Largest total weight

- Given a set of n packets of weights w_1 , ..., w_n
 - Example:

- What is the largest total weight of any combination?
 - Example:
 - The best combination:

• If all weights are positive, then selecting all packets gives the largest total weight

COMP103: 308

Combinations – List all

Combinations

- Can we list all combinations with their respective total weight?
- **Total Weight**

 How many combinations are of n packets are there?

• 2ⁿ

Combinations – Selecting Packets

- How can we ensure that we did not forget any combination?
 - We just decide for each packet whether it should be selected for the combination or not
 - Yes = "packet selected", No = "packet not selected"

		3	4	7	Total Weight
Combinations	0	No	No	No	0
	1	Yes	No	No	3
	2	No	Yes	No	4
	3	No	No	Yes	7
Co	4	Yes	Yes	No	7
	5	Yes	No	Yes	10
	6	No	Yes	Yes	11
	7	Yes	Yes	Yes	14

How to represent combinations?

- Anything that can be improved?
 - For an algorithm we better use 1 and 0 rather than Yes and No

- We use a binary representation for combinations:
 - Example: 011 stand for packets 2 and 3

How to represent combinations?

- Does this idea also work for more than 3 packets?
 - Yes, here an example for n = 14:
 - 10001110011010 stands for the packets 1, 5, 6, 7, 10, 11, 13

- Step through all numbers from 0 to 111 to try all combinations
 - for combn from 0 to 111
 - work out total weight of combination
 - if weight <= target and weight > best so far
 - remember weight and combn

Cost of Algorithm with loop

- if n packets, then max combination represented by 2ⁿ
 - for combn from 1 to max
 - work out total weight of combination
 - if weight <= target and weight > best so far
 - remember weight and combn

with n packets, max = 2^n O(n) O(1) O(1) O(1) O(1)

Combinations – Can we do better?

- Given a set of n packets of weights w_1 , ..., w_{n_1} and a target z
 - Example:

- Idea: Consider two options
- First option: if packet 1 has weight <= target z, then select it and we still have n-1
 packets to choose from, but target must be reduced by the weight of packet 1

 Second option: do not select packet 1, then we still have n-1 packets to choose from, and target is still the same

Combinations – Can we use recursion?

- Idea: divide the problem (of size n) into two smaller subproblems (of size n-1)
 So we can use recursion
- First option: if packet 1 has weight <= target z, then select it and we still have n-1
 packets to choose from, but target must be reduced by the weight of packet 1

First subproblem of size n-1

 Second option: do not select packet 1, then we still have n-1 packets to choose from, and target is still the same

Second subproblem of size n-1

Combinations

 packet 0 	yes	no
 packet 1 	yes	no
 packet 2 	yes	no
 packet 3 	yes	no
 packet 4 	yes	no
 packet 5 	yes	no
 packet 6 	yes	no
 packet 7 	yes	no
 packet 8 	yes	no
 packet 9 	yes	no
 packet 10 	yes	no
 packet 11 	yes	no

Combinations – Using Recursion

- Start with an empty combination
- initialise bestCombination and bestTotal to 0;
- Find combinations using additional packets from index 0

- To find combinations using additional packets from index i...: // first option with first subproblem of size n-1
 - if including packet i would still be <= target
 - add it to the current combination
 - if it beats the current best, then remember total and combination.
 - find combinations using additional packets from index i+1... < RECURSIVE CALL
 - remove it from the current combination
 - // second option with second subproblem of size n-1
 - find combinations using additional packets from index i+1...

< RECURSIVE CALL

Cost of Algorithm with recursion

- Cost(n) = cost of finding with n remaining packets to try
- Cost(1) = O(1)
- Cost(n) = O(1) + Cost(n-1) + Cost(n-1)
 - $= 2 \operatorname{Cost}(n-1) + O(1)$
 - = 2(2Cost(n-2) + O(1)) + O(1)

The cost approximately doubles when n increase by $1 \Rightarrow O(2^n)$