Data Structures and Algorithms XMUT-COMP 103-2024 T1 Recursion and Algorithm Complexity

Mohammad Nekooei

School of Engineering and Computer Science
Victoria University of Wellington

- Hospital simulation
- Tick based simulation
- Queues, priorityqueues, sets, lists of queues, maps,....
- MineSweeper
- recursion!
- MedicalCenter

Aside: Priority Queues

- Why aren't the Patients in priority order when waiting in the queue?
- Note:
- The front item in the priority queue is always the highest priority.
- Higher priority items tend to be closer to the front.
- But they aren't kept in exact order.

- Priority Queues keep the items in a partially ordered tree structure \Rightarrow more efficient to add and remove items [$\mathrm{O}(\log \mathrm{n})$ instead of $\mathrm{O}(\mathrm{n})$] more details later in the course.

Analysing Costs (in general)

How can we determine the costs of a program?

- Time:
- Run the program and count the milliseconds/minutes/days.
- Count number of steps/operations the algorithm will take.
- Space:
- Measure the amount of memory the program occupies.
- Count the number of elementary data items the algorithm stores.
- Applies to Programs or Algorithms? Both.
- programs \rightarrow "benchmarking"
- algorithms \rightarrow "analysis"

What is a good algorithm?

Obviously needs to do what is expected consistently. However most problems can be solved in many ways. What is most important?

- Clarity - easy to read/implement
- Efficiency - the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm?

Benchmarking: program cost

Measure:

- actual programs, on real machines, with specific input
- measure elapsed time
- System.currentTimeMillis ()
\rightarrow time from the system clock in milliseconds
- measure real memory usage

Problems:

- what input?
- other users/processes?
- which computer?
\Rightarrow use large data sets
don't include user input
\Rightarrow minimise
average over many runs
\Rightarrow specify details
- how to compare cross-platform? $\Rightarrow \quad$ measure cost at an abstract level

Analysis: Algorithm "complexity"

- Abstract away from the details of
- the hardware, the operating system
- the programming language, the compiler
- the specific input
- Measure number of "steps" as a function of the data size
- best case (easy, but not interesting)
- worst case (usually easy)
- average case (harder)
- The precise number of steps is not required
- $3.47 \mathrm{n}^{2}-67 \mathrm{n}+53$ steps
- $3 n \log (n)+5 n-3$ steps
- Rather, we are interested in how the cost grows with data size on large data

Big-O Notation

- "Asymptotic cost", or "big-O" cost describes how cost grows with large input size
- Only care about large input sets
- Lower-order terms become insignificant for large n
- We care about how cost grows with input size
- Don't care about constant factors
- Multiplication factors (3, 102, 3 and 12 below) don't tell us how things "scale up"
- Lower-order terms become insignificant for large n

$$
\begin{array}{ll}
3.47 n^{2}+102 n+10064 \text { steps } & \rightarrow O\left(n^{2}\right) \\
3 n \log n+12 n \text { steps } & \rightarrow O(n \log n)
\end{array}
$$

How the different costs grow

Big-O classes

- Examples:
- $\mathrm{O}(1)$ constant: cost is independent of n : Fixed cost!
- Retrieve/insert in regular arrays, hashmap operations
- O(log n) logarithmic: cost grows by 1, when n doubles : almost constant
- Traversing a binary tree, some divide-conquer algorithms
- O(n) linear: cost grows linearly with n :
- Find a value in array, do something to all elements in an array, adding in the middle of ArrayList
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ log linear: cost grows a bit more than linear: Slow growth!
- Good sorting algorithms (merge, quick, heap sort). Complex divide-conquer algorithms

Big-O classes

- Examples continued:
- $O\left(n^{2}\right) \quad$ quadratic: costs $\times 4$ when n doubles: limits problem size
- Do something to all elements in a 2d array. Nested loops
- $O\left(n^{c}\right), c>2$ polynomial: limits problem size even more
- Do something to all elements in a 3d array. Many nested loops
- $\mathrm{O}\left(2^{n}\right) \quad$ exponential: costs doubles when n increases by 1 : severely limits problem size
- Route finding, e.g. travelling salesman problem
- Super-exponential:
e.g.O(n!) don't even think about it...

How the different costs grow

- For growing n , the costs grow slower or faster depending on the cost function

Manageable problem sizes

- How large can the data be?
- Assume one step takes one microsecond (i.e., $10^{-6} \mathrm{sec}$) on the computer
- Then the following problem sizes can be handled by an algorithm in a given Big-O class within a given time unit

Time	$\mathbf{1}$ min	$\mathbf{1} \mathbf{~ h}$	$\mathbf{1}$ day	$\mathbf{1}$ week	$\mathbf{1}$ year
$\mathrm{O}(\mathrm{n})$	10^{7}	10^{9}	10^{11}	10^{12}	10^{13}
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	10^{6}	10^{8}	10^{9}	10^{10}	10^{12}
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	10^{4}	10^{5}	10^{5}	10^{6}	10^{7}
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	10^{2}	10^{3}	10^{3}	10^{4}	10^{4}
$\mathrm{O}\left(2^{n}\right)$	25	31	36	39	44

How much is 1
year ? about
half a million sec

What is a "step"?

- Any important actions that are at the centre of the algorithm
- comparing data
- moving data
- anything you consider to be "expensive"
- Doesn't depend on size of data
public E remove (int index)\{
if (index <0 || index >= count) throw newException();
E ans = data[index];
for (int i=index+1; $\mathrm{i}<$ count; $\mathrm{i}++$)
data[i-1]=data[i]; \leftarrow Key Step
count--;
data[count] = null; return ans;
\}

What's a step: Pragmatics

- Count the most expensive actions?
- Adding 2 numbers is cheap
- Raising to a power is not so cheap
- Comparing 2 strings may be expensive
- Reading a line from a file may be very expensive
- Waiting for input from a user or another program may take forever...
- Remember the Big (O) picture
- Sometimes we need to know about how the underlying operations are implemented in the computer to choose well (NWEN241/342).

Costs of Standard Collection classes

- ArrayList: $\quad \mathrm{O}(1)$: clear, add, set, remove from end:
$O(n)$: add, remove, contains, Collections.reverse, .shuffle $\mathrm{O}(\mathrm{n} \log (\mathrm{n})$) Collections.sort,
- ArrayDeque: $\mathrm{O}(1)$: O(n):
- PriorityQueue: $O(\log (\mathrm{n}))$:
- HashSet:
- TreeSet:

O(1):
$O(\log (n))$: add, remove, contains

- HashMap: O(1): contains, remove(obj)
offer, poll
add, remove, contains
clear, containsKey, put, get
clear, push, pop, offer, poll, add/remove First/Last: But depends on the cost of hashCode

Example Algorithms

- Finding the Mode of a set of numbers
- Shuffle a List
- Find combinations of items to fill a pallett
- Find permutations of letters to make words.
- (fix the dictionary!)

Finding the Mode of a list

- Mean = total/count
- Median = middle value, separating top 50\% from bottom 50\%
- Mode = most frequent number.
$23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19$

Algorithm:

- set mode to the first number and modeCount to 1
- for each value in the list:
- step through the list to count how many times value occurs in the list
- if count > modeCount then set mode and modeCount to value and count

What's the cost if there are n numbers?

Mode: the bad way

Analysis

```
public int mode(List<Integer>numbers)\{
int mode \(=\) numbers.get(0); \(1 \times 0\) (1)
int modeCount \(=1 ; \quad 1 \times O(1)\)
for (int value : numbers)\{
int count = 0;
\(\mathrm{n} \times \mathrm{O}\) (1)
for (int other : numbers)\{ if (other \(==\) value) \(\{\quad n \times n \times O(1)\) count++; \(\quad n \times n \times O(1)\) \}
\}
if (count > modeCount) \(\{\mathrm{nx} \mathrm{O}\) (1)
mode = value; \(\quad 1 \ldots \mathrm{n} \times \mathrm{O}(1)\) modeCount = count; 1 ... \(\mathrm{n} \times \mathrm{O}\) (1) \} \}
return mode;
\(1 \times \mathrm{O}(1)\)
int mode = numbers.get(0); 1\timesO(1)
    hodeCount = 1,
    int count = 0; n m O(1)
    for (int other : numbers){
        count++; n nn x O(1)
        }
    }
        M, (1)
    }
    }
```

\}

Finding the Mode of a list faster

- Much easier to see if the list is sorted in order:
$23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19$
$5,5,7,16,18,18,19,21,21,21,21,22,23,23,25,27,27,28,31,39,42,43,43,43,45,49$
- Algorithm
- sort the list

- set mode to first number and modeCount to 1
- set count to 1
- step through the list from index 1
- if the number is the same as the previous number, then increment count
- else
- if count > modeCount, then set mode and modeCount to previous value and count
- reset count to 1
- if count > modeCount, then set mode and modeCount to previous value and count

Finding the Mode of a list faster

- Algorithm
- sort the list
- set mode to first number and modeCount to 1
- set count to 1
- step through the list from index 1
- if number is same as previous number, then
- increment count
- else
- if count > modeCount, then
- set mode and modeCount to previous number and count $\mathrm{n} . . .1$ times $\mathrm{O}(1)$
- reset count to 1
- if count > modeCount, then
- set mode and modeCount to previous value and count

Finding the Mode of a list even faster

- Count using a map to count without sorting:
$23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19$

```
5-2 7-1 16-1 18-2 19-1 21-4 22-1 23-2 25-1
27-2 28-1 31-1 39-1 42-1 43-3 45-1 49-1
```

- Algorithm

- for each value in the list
- if the value is in the map, then increment the associated count
- else add the value to the map with an associated count of 1.
- for each key in map,
- if associated count > modeCount, then set mode and modeCount to key and count

Finding the Mode of a list even faster

- Algorithm

Analysis

- for each value in the list
- if the value is in map, then
n times

- increment the associated count
- else
- add value to map with associated count =1.
- for each key in map,
- if associated count > modeCount, then
- set mode and modeCount to key and count
$\mathrm{n} \times \mathrm{O}(1) \quad$ containskey(key)
1...n $\times \mathbf{O}(1) \quad \operatorname{get}(.). \& \operatorname{put}(.$.
n... 1×0 (1) $\quad \operatorname{put}($ key, 1)

O(1) get all keys
$\mathrm{n} \times \mathrm{O}(1)$
get(key)
1... $n \times O(1)$

Shuffle a list

Given a list, put items into a random order
$23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19$

- For each position, grab a random item and put it in that position
- add(position, remove(random))
vs
- swap [set(position, set(index, get(position))] or Collections.swap(...)
- Use the built-in shuffle!
- Collections.shuffle(list)

$$
\begin{aligned}
& n \times O(1) \\
& n \times O(n) \\
& n \times O(n)
\end{aligned}
$$

Total: O(n ${ }^{2}$)

$\mathrm{n} \times \mathrm{O}(1)$
$n \times O(1)$
Total: O(n)

Combinations

- Given a set of n packets of weights w_{1}, \ldots, w_{n}, and a shipping pallet/container/box that has size z
- Example:

- Given the target z , what is the largest total weight $<=\mathrm{z}$ that can be achieved?
- Example:
- $z<=10$?

Total Weight
$3+7=10$

Combinations - Largest total weight

- Given a set of n packets of weights w_{1}, \ldots, w_{n}
- Example:

-What is the largest total weight of any combination?
- Example:
- The best combination:

Total Weight
3
4
7
$3+4+7=14$

- If all weights are positive, then selecting all packets gives the largest total weight

Combinations - List all

COMP103: 308

- Can we list all combinations with their Total Weight respective total weight?

- How many combinations are of n packets are there?
- 2^{n}

Combinations - Selecting Packets

- How can we ensure that we did not forget any combination?
- We just decide for each packet whether it should be selected for the combination or not
- Yes = "packet selected", No = "packet not selected"

n0.00.00000		3	4	7	Total Weight
	0	No	No	No	0
	1	Yes	No	No	3
	2	No	Yes	No	4
	3	No	No	Yes	7
	4	Yes	Yes	No	7
	5	Yes	No	Yes	10
	6	No	Yes	Yes	11
	7	Yes	Yes	Yes	14

How to represent combinations?

- Anything that can be improved?
- For an algorithm we better use 1 and 0 rather than Yes and No

- We use a binary representation for combinations:
- Example: 011 stand for packets 2 and 3

How to represent combinations?

- Does this idea also work for more than 3 packets?
- Yes, here an example for $\mathrm{n}=14$:
- 10001110011010 stands for the packets $1,5,6,7,10,11,13$
- Step through all numbers from 0 to 111 to try all combinations
- for combn from 0 to 111
- work out total weight of combination
- if weight <= target and weight > best so far
- remember weight and combn

Cost of Algorithm with loop

- if n packets, then max combination represented by 2^{n}
- for combn from 1 to max
- work out total weight of combination
- if weight <= target and weight > best so far
- remember weight and combn
with n packets, $\max =2^{n}$

Combinations - Can we do better?

- Given a set of n packets of weights w_{1}, \ldots, w_{n}, and a target z
- Example:
Packet 1

Packet 3

Packet 2
4

Target $\mathrm{z}=12$

- Idea: Consider two options
- First option: if packet 1 has weight <= target z , then select it and we still have $\mathrm{n}-1$ packets to choose from, but target must be reduced by the weight of packet 1
- Second option: do not select packet 1, then we still have n-1 packets to choose from, and target is still the same

Combinations - Can we use recursion?

- Idea: divide the problem (of size n) into two smaller subproblems (of size $\mathrm{n}-1$)
- So we can use recursion
- First option: if packet 1 has weight <= target z, then select it and we still have $n-1$ packets to choose from, but target must be reduced by the weight of packet 1

- Second option: do not select packet 1, then we still have n-1 packets to choose from, and target is still the same

Second subproblem of size n-1

Combinations

- packet 0
- packet 1
- packet 2
- packet 3
- packet 4
- packet 5
- packet 6
- packet 7
- packet 8
- packet 9
- packet 10
- packet 11
yes no

Combinations - Using Recursion

- Start with an empty combination
- initialise bestCombination and bestTotal to 0;
- Find combinations using additional packets from index 0
- To find combinations using additional packets from index i...:
// first option with first subproblem of size n -1
- if including packet i would still be <= target
- add it to the current combination
- if it beats the current best, then remember total and combination.
- find combinations using additional packets from index $i+1$... < RECURSIVE CALL
- remove it from the current combination
// second option with second subproblem of size n-1
- find combinations using additional packets from index i+1... < RECURSIVE CALL

Cost of Algorithm with recursion

- $\operatorname{Cost}(\mathrm{n})=$ cost of finding with n remaining packets to try
- $\operatorname{Cost}(1)=O(1)$
- $\operatorname{Cost}(n)=O(1)+\operatorname{Cost}(n-1)+\operatorname{Cost}(n-1)$

$$
\begin{aligned}
& =2 \operatorname{Cost}(n-1)+O(1) \\
& =2(2 \operatorname{Cost}(n-2)+O(1))+O(1)
\end{aligned}
$$

The cost approximately doubles when n increase by $1=>0\left(2^{\wedge} n\right)$

