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Assignment 3
• Hospital simulation

• Tick based simulation
• Queues, priorityqueues, sets, lists of queues, maps,….

• MineSweeper
• recursion!

• MedicalCenter
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Aside: Priority Queues
• Why aren't the Patients in priority order

when waiting in the queue?

• Note:
• The front item in the priority queue

is always the highest priority.
• Higher priority items tend to be 

closer to the front.
• But they aren't kept in exact order.

• Priority Queues keep the items in a partially ordered tree structure
⇒ more efficient to add and remove items  [ O(log n) instead of O(n) ]
more details later in the course.  
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Analysing Costs (in general)
How can we determine the costs of a program?

• Time:
• Run the program and count the milliseconds/minutes/days.
• Count number of steps/operations the algorithm will take.

• Space:
• Measure the amount of memory the program occupies.
• Count the number of elementary data items the algorithm stores.

• Applies to Programs or Algorithms?  Both.
• programs  “benchmarking”
• algorithms  “analysis”
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What is a good algorithm?
Obviously needs to do what is expected consistently. However most problems can be 
solved in many ways. What is most important?
• Clarity - easy to read/implement
• Efficiency - the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm? 
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Benchmarking: program cost
Measure:

• actual programs, on real machines, with specific input
• measure elapsed time

• System.currentTimeMillis ()  
→ time from the system clock in milliseconds   

• measure real memory usage

Problems:
• what input? ⇒ use large data sets

don’t include user input
• other users/processes? ⇒ minimise 

average over many runs
• which computer? ⇒ specify details

• how to compare cross-platform? ⇒ measure cost at an abstract level 
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Analysis: Algorithm “complexity”
• Abstract away from the details of

• the hardware, the operating system
• the programming language, the compiler
• the specific input

• Measure number of “steps” as a function of the data size
• best case (easy, but not interesting)
• worst case  (usually easy)
• average case   (harder)

• The precise number of steps is not required
• 3.47 n2 - 67n + 53  steps
• 3n log(n) + 5n - 3 steps

• Rather, we are interested in how the cost grows with data size on large data
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Big-O Notation
• “Asymptotic cost”, or “big-O” cost describes how cost grows with large input size
• Only care about large input sets 

• Lower-order terms become insignificant for large n

• We care about how cost grows with input size
• Don’t care about constant factors
• Multiplication factors (3, 102, 3 and 12 below) don’t tell us how things “scale up”
• Lower-order terms become insignificant for large n

3.47 n2 + 102n + 10064  steps  O(n2)

3n log n  + 12n  steps  O(n log n) 
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How the different costs grow

n: size of input
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Big-O classes
• Examples:

• O(1) constant: cost is independent of n : Fixed cost!
• Retrieve/insert in regular arrays, hashmap operations

• O(log n) logarithmic: cost grows by 1, when n doubles : almost constant
• Traversing a binary tree, some divide-conquer algorithms

• O(n) linear: cost grows linearly with n :
• Find a value in array, do something to all elements in an array, adding in the 

middle of ArrayList

• O(n log n) log linear: cost grows a bit more than linear: Slow growth!
• Good sorting algorithms (merge, quick, heap sort). Complex divide-conquer 

algorithms
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Big-O classes
• Examples continued:

• O(n2) quadratic: costs x 4 when n doubles: limits problem size
• Do something to all elements in a 2d array. Nested loops

• O(nc), c>2 polynomial: limits problem size even more
• Do something to all elements in a 3d array. Many nested loops

• O(2n) exponential: costs doubles when n increases by 1: 
severely limits problem size

• Route finding, e.g. travelling salesman problem
• Super-exponential: e.g.O(n!) don’t even think about it…
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How the different costs grow
• For growing n, the costs grow slower or faster depending on the cost function

costs
(steps)
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Manageable problem sizes
• How large can the data be?

• Assume one step takes one microsecond (i.e., 10-6 sec) on the computer
• Then the following problem sizes can be handled by an algorithm in a given 

Big-O class within a given time unit

Time 1 min 1 h 1 day 1 week 1 year

O(n) 107 109 1011 1012 1013

O(n log n) 106 108 109 1010 1012

O(n2) 104 105 105 106 107

O(n3) 102 103 103 104 104

O(2n) 25 31 36 39 44

How much is 1 
year ? about
half a million sec
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• Any important actions that are at the centre of the algorithm  

• comparing data 
• moving data
• anything you consider to be “expensive”
• Doesn’t depend on size of data

public E remove (int index){
if (index < 0 || index >= count) throw new ….Exception();
E ans = data[index];
for (int i=index+1; i< count; i++)

data[i-1]=data[i];
count--; 
data[count] = null;
return ans; 

} 

← Key Step
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What’s a step:  Pragmatics
• Count the most expensive actions?

• Adding 2 numbers is cheap

• Raising to a power is not so cheap

• Comparing 2 strings may be expensive

• Reading a line from a file may be very expensive

• Waiting for input from a user or another program may take forever…

• Remember the Big (O) picture

• Sometimes we need to know about how the underlying operations are 
implemented in the computer to choose well (NWEN241/342).
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Costs of Standard Collection classes
• ArrayList: O(1): clear, add, set, remove from end:   

O(n): add, remove, contains,  Collections.reverse,  .shuffle
O(n log(n))   Collections.sort, 

• ArrayDeque: O(1): clear, push, pop, offer, poll,  add/remove First/Last:   
O(n): contains, remove(obj)

• PriorityQueue: O(log(n)): offer, poll

• HashSet: O(1): add, remove, contains
• TreeSet: O(log(n)): add, remove, contains

• HashMap: O(1): clear, containsKey, put, get   
But depends on the cost of hashCode
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Example Algorithms
• Finding the Mode of a set of numbers

• Shuffle a List

• Find combinations of items to fill a pallett

• Find permutations of letters to make words.
• (fix the dictionary!)
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Finding the Mode of a list
• Mean    = total/count
• Median = middle value, separating top 50% from bottom 50%
• Mode    = most frequent number.

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

Algorithm:
• set mode to the first number and modeCount to 1
• for each value in the list:

• step through the list to count how many times value occurs in the list
• if count > modeCount then  set mode and modeCount to value and count

What’s the cost if there 
are n numbers?
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Mode: the bad way
public int mode(List<Integer>numbers){

int mode = numbers.get(0);
int modeCount = 1;
for (int value : numbers){

int count = 0;
for (int other : numbers){

if (other == value) { 
count++;

}
}
if (count > modeCount) { 

mode = value;  
modeCount = count;

}
}
return mode;

}

Analysis

1 x O(1)

n*n iterations

n iterations

nxn x O(1)
nxn x O(1)

n x O(1)

n x O(1)

1 … n x O(1)
1 … n x O(1)

1 x O(1)

1 x O(1)

O(n2)
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Finding the Mode of a list faster
• Much easier to see if the list is sorted in order:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5,5,7,16,18,18,19,21,21,21,21,22,23,23,25,27,27,28,31,39,42,43,43,43,45,49
• Algorithm

• sort the list
• set mode to first number and modeCount to 1
• set count to 1
• step through the list from index 1

• if the number is the same as the previous number, then increment count
• else

• if count > modeCount, then set mode and modeCount to previous value and count
• reset count to 1

• if count > modeCount, then set mode and modeCount to previous value and count

What’s the cost if there 
are n numbers?
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Finding the Mode of a list faster
• Algorithm

• sort the list
• set mode to first number and modeCount to 1
• set count to 1
• step through the list from index 1

• if number is same as previous number, then
• increment count

• else
• if count > modeCount, then

• set mode and modeCount to previous number and count
• reset count to 1

• if count > modeCount, then
• set mode and modeCount to previous value and count

Analysis

1 time x O(1) 

n iterations

n times x O(1) 

n … 1 times x O(1)

1 time x O(1)

1 x O(n log(n))

1 time x O(1) 

1 … n times x O(1)

n … 1 times x O(1)
n … 1 times O(1)

Total:   O(n log(n))
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Finding the Mode of a list even faster
• Count using a map to count without sorting:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5-2    7-1    16-1  18-2   19-1  21-4  22-1  23-2  25-1 
27-2   28-1 31-1   39-1  42-1  43-3  45-1  49-1

• Algorithm
• for each value in the list 

• if the value is in the map, then increment the associated count
• else add the value to the map with an associated count of 1.

• for each key in map,
• if associated count > modeCount, then set mode and modeCount to key and count 

What’s the cost if there 
are n numbers?
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Finding the Mode of a list even faster
• Algorithm

• for each value in the list 

• if the value is in map, then
• increment the associated count

• else
• add value to map with associated count =1.

• for each key in map,

• if associated count > modeCount, then
• set mode and modeCount to key and count 

Analysis

n x O(1)             get(key)

n x O(1)            containskey(key)

O(1)                   get all keys

Total:   O(n)

n times

n times

1…n x O(1)       get(..) & put(..)

n…1 x O(1)       put(key, 1)

1…n x O(1)
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Shuffle a list
Given a list, put items into a random order

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

• For each position, grab a random item and put it in that position
• add(position, remove(random) )
vs
• swap  [ set(position,  set(index, get(position)) ]    or   Collections.swap(…)

• Use the built-in shuffle!    
• Collections.shuffle(list)
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Shuffle a list

• For each position from n-1 to 0, 
• choose a random index ≤ position
• item = remove(index)
• add(position, item)

• For each position from n-1 to 0, 
• choose a random index <= position
• swap(index, position)

n x O(1)n times
n x O(n)
n x O(n)

Total:   O(n2)

n x O(1)n times
n x O(1)

Total:   O(n)
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Combinations
• Given a set of n packets of weights w1 , ..., wn, and a shipping pallet/container/box 

that has size z
• Example:

• Given the target z, what is the largest total weight <= z that can be achieved?
• Example: 
• z <= 10 ?

• z <= 6 ? 

3 4 7 3 + 7 = 10
Total Weight

3 4 7 4

Total Weight

Packet 1
3

Packet 2
4

Packet 3
7
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Combinations – Largest total weight
• Given a set of n packets of weights w1 , ..., wn

• Example:

• What is the largest total weight of any combination?
• Example:
• The best combination: 

• If all weights are positive, then selecting all packets gives the largest total weight

3 4 7 3 + 4 + 7 = 14

Total Weight

Packet 1
3

Packet 2
4

Packet 3
7
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Combinations – List all
• Can we list all 

combinations with their 
respective total weight?

• How many 
combinations are of n 
packets are there? 

• 2n

1 3 4 7 3

2 3 4 7 4

3 3 4 7 7

4 3 4 7 7

5 3 4 7 10

6 3 4 7 11

7 3 4 7 14

0 3 4 7 0

3 4 7 Total Weight

C
om

bi
na

tio
ns
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Combinations – Selecting Packets
• How can we ensure that we did not forget any combination?

• We just decide for each packet whether it should be selected for the 
combination or not

• Yes = “packet selected”, No = “packet not selected”

3 4 7 Total Weight
0 No No No 0
1 Yes No No 3
2 No Yes No 4
3 No No Yes 7
4 Yes Yes No 7
5 Yes No Yes 10
6 No Yes Yes 11
7 Yes Yes Yes 14

C
om

bi
na

tio
ns
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How to represent combinations?
• Anything that can be improved?

• For an algorithm we better use 1 and 0 rather than Yes and No

• We use a binary representation for combinations:
• Example: 011 stand for packets 2 and 3

3 4 7 Total Weight
0 0 0 0 0
1 1 0 0 3
2 0 1 0 4
3 0 0 1 7
4 1 1 0 7
5 1 0 1 10
6 0 1 1 11
7 1 1 1 14

C
om

bi
na

tio
ns
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How to represent combinations?
• Does this idea also work for more than 3 packets?

• Yes, here an example for n = 14:
• 10001110011010  stands for the packets 1, 5, 6, 7, 10, 11,13

• Step through all numbers from 0 to 111 to try all combinations

• for combn from 0 to 111
• work out total weight of combination
• if weight <= target  and  weight > best so far

• remember weight and combn
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Cost of Algorithm with loop
• if n packets,   then max combination represented by 2n

• for combn from 1 to max with n packets, max = 2n

• work out total weight of combination O(n)

• if weight <= target  and  weight > best so far O(1)     2n  times

• remember weight and combn O(1)
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Combinations – Can we do better?
• Given a set of n packets of weights w1 , ..., wn, and a target z

• Example:

• Idea: Consider two options
• First option: if packet 1 has weight <= target z, then select it and we still have n-1 

packets to choose from, but target must be reduced by the weight of packet 1

• Second option: do not select packet 1, then we still have n-1 packets to choose 
from, and target is still the same

Packet 1
3

Packet 2
4

Packet 3
7 Target z = 12
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Combinations – Can we use recursion?
• Idea: divide the problem (of size n) into two smaller subproblems (of size n-1)

• So we can use recursion

• First option: if packet 1 has weight <= target z, then select it and we still have n-1 
packets to choose from, but target must be reduced by the weight of packet 1

• Second option: do not select packet 1, then we still have n-1 packets to choose 
from, and target is still the same

First subproblem of size n-1

Second subproblem of size n-1
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Combinations
• packet 0 yes no
• packet 1 yes no
• packet 2 yes no
• packet 3 yes no
• packet 4 yes no
• packet 5 yes no
• packet 6 yes no
• packet 7 yes no
• packet 8 yes no
• packet 9 yes no
• packet 10 yes no
• packet 11 yes no
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Combinations – Using Recursion
• Start with an empty combination
• initialise bestCombination and bestTotal to 0;
• Find combinations using additional packets from index 0

• To find combinations using additional packets from index i…:
// first option with first subproblem of size n-1
• if including packet i would still be <= target 

• add it to the current combination
• if it beats the current best, then remember total and combination.
• find combinations using additional packets from index i+1…    <  RECURSIVE CALL
• remove it from the current combination

// second option with second subproblem of size n-1
• find combinations using additional packets from index i+1…          < RECURSIVE CALL
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Cost of Algorithm with recursion 

• Cost(n)  = cost of finding with n remaining packets to try

• Cost(1)  =  O(1)
• Cost(n) =  O(1) + Cost(n-1) + Cost(n-1)

=  2 Cost(n-1) + O(1)
=  2(2Cost(n-2) + O(1)) + O(1)

The cost approximately doubles when n increase by 1 => O(2^n)
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