
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

Recursion and Algorithm Complexity

Mohammad Nekooei
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 280

Assignment 3
• Hospital simulation

• Tick based simulation
• Queues, priorityqueues, sets, lists of queues, maps,….

• MineSweeper
• recursion!

• MedicalCenter

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 281

Aside: Priority Queues
• Why aren't the Patients in priority order

when waiting in the queue?

• Note:
• The front item in the priority queue

is always the highest priority.
• Higher priority items tend to be

closer to the front.
• But they aren't kept in exact order.

• Priority Queues keep the items in a partially ordered tree structure
⇒ more efficient to add and remove items [O(log n) instead of O(n)]
more details later in the course.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 282

Analysing Costs (in general)
How can we determine the costs of a program?

• Time:
• Run the program and count the milliseconds/minutes/days.
• Count number of steps/operations the algorithm will take.

• Space:
• Measure the amount of memory the program occupies.
• Count the number of elementary data items the algorithm stores.

• Applies to Programs or Algorithms? Both.
• programs “benchmarking”
• algorithms “analysis”

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 283

What is a good algorithm?
Obviously needs to do what is expected consistently. However most problems can be
solved in many ways. What is most important?
• Clarity - easy to read/implement
• Efficiency - the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 284

Benchmarking: program cost
Measure:

• actual programs, on real machines, with specific input
• measure elapsed time

• System.currentTimeMillis ()
→ time from the system clock in milliseconds

• measure real memory usage

Problems:
• what input? ⇒ use large data sets

don’t include user input
• other users/processes? ⇒ minimise

average over many runs
• which computer? ⇒ specify details

• how to compare cross-platform? ⇒ measure cost at an abstract level

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 285

Analysis: Algorithm “complexity”
• Abstract away from the details of

• the hardware, the operating system
• the programming language, the compiler
• the specific input

• Measure number of “steps” as a function of the data size
• best case (easy, but not interesting)
• worst case (usually easy)
• average case (harder)

• The precise number of steps is not required
• 3.47 n2 - 67n + 53 steps
• 3n log(n) + 5n - 3 steps

• Rather, we are interested in how the cost grows with data size on large data

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 286

Big-O Notation
• “Asymptotic cost”, or “big-O” cost describes how cost grows with large input size
• Only care about large input sets

• Lower-order terms become insignificant for large n

• We care about how cost grows with input size
• Don’t care about constant factors
• Multiplication factors (3, 102, 3 and 12 below) don’t tell us how things “scale up”
• Lower-order terms become insignificant for large n

3.47 n2 + 102n + 10064 steps O(n2)

3n log n + 12n steps O(n log n)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 287

How the different costs grow

n: size of input

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0 100 200 300 400 500 600 700 800 900 1000

log2 n

n

n logn

n^2

n^3

2^n

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 288

Big-O classes
• Examples:

• O(1) constant: cost is independent of n : Fixed cost!
• Retrieve/insert in regular arrays, hashmap operations

• O(log n) logarithmic: cost grows by 1, when n doubles : almost constant
• Traversing a binary tree, some divide-conquer algorithms

• O(n) linear: cost grows linearly with n :
• Find a value in array, do something to all elements in an array, adding in the

middle of ArrayList

• O(n log n) log linear: cost grows a bit more than linear: Slow growth!
• Good sorting algorithms (merge, quick, heap sort). Complex divide-conquer

algorithms

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 289

Big-O classes
• Examples continued:

• O(n2) quadratic: costs x 4 when n doubles: limits problem size
• Do something to all elements in a 2d array. Nested loops

• O(nc), c>2 polynomial: limits problem size even more
• Do something to all elements in a 3d array. Many nested loops

• O(2n) exponential: costs doubles when n increases by 1:
severely limits problem size

• Route finding, e.g. travelling salesman problem
• Super-exponential: e.g.O(n!) don’t even think about it…

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 290

How the different costs grow
• For growing n, the costs grow slower or faster depending on the cost function

costs
(steps)

size of input (n)0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0 100 200 300 400 500 600 700 800 900 1000

log2 n

n

n logn

n^2

n^3

2^n

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 291

Manageable problem sizes
• How large can the data be?

• Assume one step takes one microsecond (i.e., 10-6 sec) on the computer
• Then the following problem sizes can be handled by an algorithm in a given

Big-O class within a given time unit

Time 1 min 1 h 1 day 1 week 1 year

O(n) 107 109 1011 1012 1013

O(n log n) 106 108 109 1010 1012

O(n2) 104 105 105 106 107

O(n3) 102 103 103 104 104

O(2n) 25 31 36 39 44

How much is 1
year ? about
half a million sec

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 292What is a “step”?
• Any important actions that are at the centre of the algorithm

• comparing data
• moving data
• anything you consider to be “expensive”
• Doesn’t depend on size of data

public E remove (int index){
if (index < 0 || index >= count) throw new ….Exception();
E ans = data[index];
for (int i=index+1; i< count; i++)

data[i-1]=data[i];
count--;
data[count] = null;
return ans;

}

← Key Step

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 293

What’s a step: Pragmatics
• Count the most expensive actions?

• Adding 2 numbers is cheap

• Raising to a power is not so cheap

• Comparing 2 strings may be expensive

• Reading a line from a file may be very expensive

• Waiting for input from a user or another program may take forever…

• Remember the Big (O) picture

• Sometimes we need to know about how the underlying operations are
implemented in the computer to choose well (NWEN241/342).

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 294

Costs of Standard Collection classes
• ArrayList: O(1): clear, add, set, remove from end:

O(n): add, remove, contains, Collections.reverse, .shuffle
O(n log(n)) Collections.sort,

• ArrayDeque: O(1): clear, push, pop, offer, poll, add/remove First/Last:
O(n): contains, remove(obj)

• PriorityQueue: O(log(n)): offer, poll

• HashSet: O(1): add, remove, contains
• TreeSet: O(log(n)): add, remove, contains

• HashMap: O(1): clear, containsKey, put, get
But depends on the cost of hashCode

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 295

Example Algorithms
• Finding the Mode of a set of numbers

• Shuffle a List

• Find combinations of items to fill a pallett

• Find permutations of letters to make words.
• (fix the dictionary!)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 296

Finding the Mode of a list
• Mean = total/count
• Median = middle value, separating top 50% from bottom 50%
• Mode = most frequent number.

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

Algorithm:
• set mode to the first number and modeCount to 1
• for each value in the list:

• step through the list to count how many times value occurs in the list
• if count > modeCount then set mode and modeCount to value and count

What’s the cost if there
are n numbers?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 298

Mode: the bad way
public int mode(List<Integer>numbers){

int mode = numbers.get(0);
int modeCount = 1;
for (int value : numbers){

int count = 0;
for (int other : numbers){

if (other == value) {
count++;

}
}
if (count > modeCount) {

mode = value;
modeCount = count;

}
}
return mode;

}

Analysis

1 x O(1)

n*n iterations

n iterations

nxn x O(1)
nxn x O(1)

n x O(1)

n x O(1)

1 … n x O(1)
1 … n x O(1)

1 x O(1)

1 x O(1)

O(n2)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 299

Finding the Mode of a list faster
• Much easier to see if the list is sorted in order:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5,5,7,16,18,18,19,21,21,21,21,22,23,23,25,27,27,28,31,39,42,43,43,43,45,49
• Algorithm

• sort the list
• set mode to first number and modeCount to 1
• set count to 1
• step through the list from index 1

• if the number is the same as the previous number, then increment count
• else

• if count > modeCount, then set mode and modeCount to previous value and count
• reset count to 1

• if count > modeCount, then set mode and modeCount to previous value and count

What’s the cost if there
are n numbers?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 300

Finding the Mode of a list faster
• Algorithm

• sort the list
• set mode to first number and modeCount to 1
• set count to 1
• step through the list from index 1

• if number is same as previous number, then
• increment count

• else
• if count > modeCount, then

• set mode and modeCount to previous number and count
• reset count to 1

• if count > modeCount, then
• set mode and modeCount to previous value and count

Analysis

1 time x O(1)

n iterations

n times x O(1)

n … 1 times x O(1)

1 time x O(1)

1 x O(n log(n))

1 time x O(1)

1 … n times x O(1)

n … 1 times x O(1)
n … 1 times O(1)

Total: O(n log(n))

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 301

Finding the Mode of a list even faster
• Count using a map to count without sorting:

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

5-2 7-1 16-1 18-2 19-1 21-4 22-1 23-2 25-1
27-2 28-1 31-1 39-1 42-1 43-3 45-1 49-1

• Algorithm
• for each value in the list

• if the value is in the map, then increment the associated count
• else add the value to the map with an associated count of 1.

• for each key in map,
• if associated count > modeCount, then set mode and modeCount to key and count

What’s the cost if there
are n numbers?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 302

Finding the Mode of a list even faster
• Algorithm

• for each value in the list

• if the value is in map, then
• increment the associated count

• else
• add value to map with associated count =1.

• for each key in map,

• if associated count > modeCount, then
• set mode and modeCount to key and count

Analysis

n x O(1) get(key)

n x O(1) containskey(key)

O(1) get all keys

Total: O(n)

n times

n times

1…n x O(1) get(..) & put(..)

n…1 x O(1) put(key, 1)

1…n x O(1)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 304

Shuffle a list
Given a list, put items into a random order

23,22,49,25,43,23,5,31,43,27,21,45,43,16,5,21,18,27,39,18,21,7,42,28,21,19

• For each position, grab a random item and put it in that position
• add(position, remove(random))
vs
• swap [set(position, set(index, get(position))] or Collections.swap(…)

• Use the built-in shuffle!
• Collections.shuffle(list)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 305

Shuffle a list

• For each position from n-1 to 0,
• choose a random index ≤ position
• item = remove(index)
• add(position, item)

• For each position from n-1 to 0,
• choose a random index <= position
• swap(index, position)

n x O(1)n times
n x O(n)
n x O(n)

Total: O(n2)

n x O(1)n times
n x O(1)

Total: O(n)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 306

Combinations
• Given a set of n packets of weights w1 , ..., wn, and a shipping pallet/container/box

that has size z
• Example:

• Given the target z, what is the largest total weight <= z that can be achieved?
• Example:
• z <= 10 ?

• z <= 6 ?

3 4 7 3 + 7 = 10
Total Weight

3 4 7 4

Total Weight

Packet 1
3

Packet 2
4

Packet 3
7

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 307

Combinations – Largest total weight
• Given a set of n packets of weights w1 , ..., wn

• Example:

• What is the largest total weight of any combination?
• Example:
• The best combination:

• If all weights are positive, then selecting all packets gives the largest total weight

3 4 7 3 + 4 + 7 = 14

Total Weight

Packet 1
3

Packet 2
4

Packet 3
7

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 308

Combinations – List all
• Can we list all

combinations with their
respective total weight?

• How many
combinations are of n
packets are there?

• 2n

1 3 4 7 3

2 3 4 7 4

3 3 4 7 7

4 3 4 7 7

5 3 4 7 10

6 3 4 7 11

7 3 4 7 14

0 3 4 7 0

3 4 7 Total Weight

C
om

bi
na

tio
ns

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 309

Combinations – Selecting Packets
• How can we ensure that we did not forget any combination?

• We just decide for each packet whether it should be selected for the
combination or not

• Yes = “packet selected”, No = “packet not selected”

3 4 7 Total Weight
0 No No No 0
1 Yes No No 3
2 No Yes No 4
3 No No Yes 7
4 Yes Yes No 7
5 Yes No Yes 10
6 No Yes Yes 11
7 Yes Yes Yes 14

C
om

bi
na

tio
ns

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 310

How to represent combinations?
• Anything that can be improved?

• For an algorithm we better use 1 and 0 rather than Yes and No

• We use a binary representation for combinations:
• Example: 011 stand for packets 2 and 3

3 4 7 Total Weight
0 0 0 0 0
1 1 0 0 3
2 0 1 0 4
3 0 0 1 7
4 1 1 0 7
5 1 0 1 10
6 0 1 1 11
7 1 1 1 14

C
om

bi
na

tio
ns

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 311

How to represent combinations?
• Does this idea also work for more than 3 packets?

• Yes, here an example for n = 14:
• 10001110011010 stands for the packets 1, 5, 6, 7, 10, 11,13

• Step through all numbers from 0 to 111 to try all combinations

• for combn from 0 to 111
• work out total weight of combination
• if weight <= target and weight > best so far

• remember weight and combn

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 312

Cost of Algorithm with loop
• if n packets, then max combination represented by 2n

• for combn from 1 to max with n packets, max = 2n

• work out total weight of combination O(n)

• if weight <= target and weight > best so far O(1) 2n times

• remember weight and combn O(1)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 313

Combinations – Can we do better?
• Given a set of n packets of weights w1 , ..., wn, and a target z

• Example:

• Idea: Consider two options
• First option: if packet 1 has weight <= target z, then select it and we still have n-1

packets to choose from, but target must be reduced by the weight of packet 1

• Second option: do not select packet 1, then we still have n-1 packets to choose
from, and target is still the same

Packet 1
3

Packet 2
4

Packet 3
7 Target z = 12

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 314

Combinations – Can we use recursion?
• Idea: divide the problem (of size n) into two smaller subproblems (of size n-1)

• So we can use recursion

• First option: if packet 1 has weight <= target z, then select it and we still have n-1
packets to choose from, but target must be reduced by the weight of packet 1

• Second option: do not select packet 1, then we still have n-1 packets to choose
from, and target is still the same

First subproblem of size n-1

Second subproblem of size n-1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 315

Combinations
• packet 0 yes no
• packet 1 yes no
• packet 2 yes no
• packet 3 yes no
• packet 4 yes no
• packet 5 yes no
• packet 6 yes no
• packet 7 yes no
• packet 8 yes no
• packet 9 yes no
• packet 10 yes no
• packet 11 yes no

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 316

Combinations – Using Recursion
• Start with an empty combination
• initialise bestCombination and bestTotal to 0;
• Find combinations using additional packets from index 0

• To find combinations using additional packets from index i…:
// first option with first subproblem of size n-1
• if including packet i would still be <= target

• add it to the current combination
• if it beats the current best, then remember total and combination.
• find combinations using additional packets from index i+1… < RECURSIVE CALL
• remove it from the current combination

// second option with second subproblem of size n-1
• find combinations using additional packets from index i+1… < RECURSIVE CALL

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 317

Cost of Algorithm with recursion

• Cost(n) = cost of finding with n remaining packets to try

• Cost(1) = O(1)
• Cost(n) = O(1) + Cost(n-1) + Cost(n-1)

= 2 Cost(n-1) + O(1)
= 2(2Cost(n-2) + O(1)) + O(1)

The cost approximately doubles when n increase by 1 => O(2^n)

	Data Structures and Algorithms�XMUT-COMP 103 - 2024 T1 �Recursion and Algorithm Complexity
	Assignment 3
	Aside: Priority Queues
	Analysing Costs (in general)
	What is a good algorithm?
	Benchmarking: program cost
	Analysis: Algorithm “complexity”
	Big-O Notation
	How the different costs grow
	Big-O classes
	Big-O classes
	How the different costs grow
	Manageable problem sizes
	What is a “step”?
	What’s a step: Pragmatics
	Costs of Standard Collection classes
	Example Algorithms
	Finding the Mode of a list
	Mode: the bad way
	Finding the Mode of a list faster
	Finding the Mode of a list faster
	Finding the Mode of a list even faster
	Finding the Mode of a list even faster
	Shuffle a list
	Shuffle a list
	Combinations
	Combinations – Largest total weight
	Combinations – List all
	Combinations – Selecting Packets
	How to represent combinations?
	How to represent combinations?
	Cost of Algorithm with loop
	Combinations – Can we do better?
	Combinations – Can we use recursion?
	Combinations
	Combinations – Using Recursion
	Cost of Algorithm with recursion

