Data Structures and Algorithms XMUT-COMP 103 - 2024 T1 Decision trees

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

Trees

- Maps, Sets, Bags: collections with no structure
- Lists, Queues, Stacks, Deques: collections with linear structure (in order)
- Not all collections fit into those two structures.
- eg, genealogy data

Tree Structured Data

- Examples:
 - Genealogy: Ancestry or Descendancy trees (try it!) What is one difference in the structure?
 - organisational hierarchies
 - language/program structures ("parsing")
 - decision trees

Ancestry and Descendancy Trees

Ancestry

Descendancy

COMP103: 5

Decision Trees

- A decision tree is a tree whose nodes represent decision points, and whose children represent the options available
- The leaf nodes of a decision tree represent possible conclusions that might be drawn

- Decision trees are useful in diagnostic situations (medical, car repair, etc.)
- A simple decision tree, with yes/no questions, can be modeled by a binary tree

Decision Tree - Example

• Binary tree for a yes-no-decision process (Who are you?)

Decision Tree - Example

• Binary tree for a yes-no-decision process (finding a data structure)

Decision Tree - Example

• Binary tree for a yes-no-decision process (finding a data structure)

COMP103: 9

Tree Notation:

- Tree made of nodes with links
- Nodes linked to child nodes
 - might have a limit on number of children, or no limit
 - each node has one parent
- Root node is the base of the tree
 - root node has no parent
 - we typically draw it at the top!!
- Leaf nodes are nodes with no children
 - we typically draw them at the bottom!

root of the subtree

a subtree

root

Subtrees of a Tree

• A *subtree* is a tree structure that makes up part of another tree

- A tree T consists of a root and a sequence of subtrees T₁, T₂, ..., T_n
 - One subtree for each of the children of the root

Tree Structures

We will discuss how to create, use and update a tree structure

- What Data Structures support tree structured data?
- How to insert nodes into a tree structure?
- How to retrieve data from a tree structure?
 - One data item
 - Data items along a path from the root
 - All data items in a tree -> Tree Traversal

Data Structures for Tree Structured data

- Nothing new you already have all the bits!
- Map:
 - key = name of item,
 - item contains data plus names of child nodes
 - need name of root node.
- List:
 - · item contains data plus the index of child nodes
 - root at index 0

Α

D

N

Data Structures and Algorithms XMUT-COMP 103 - 2024 T1 Traversing a binary tree and Decision trees

A/Prof Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

COMP103: 14

N)

Α

Data Structures for Tree Structured data

- But why do we have to go via a key or an index?
- "Linked Structure"

Using "linked" tree structures

Using "linked" structures: looping down tree

© Peter Andreae and Mohammad Nekooei

Using "linked" structures: looping down tree

Finding a leaf node:

Running off the end: **while** (p != null){.... Stopping at the end: **while** (p.getMother() != null){.... father:

mother: -

Using "linked" tree structures:

Add next maternal ancestor: public Person oldestMatAnc (Person p){ Person tmp = p; while (tmp.getMother()!=null){ tmp = tmp.getMother(); } }

, and – and goard

return tmp;

Person p = oldestMatAnc(familyTree); UI.println("Oldest known maternal ancestor: "+p); String name = UI.askString("Name of her mother"); int dob = UI.askInt("year of birth"); p.setMother(new Person(name, dob));

Decision Trees

Ask questions until get to a decision node (leaf)

- Extending tree
 - If answer is wrong, turn into a question node
 - Add child nodes (old and new answers)