Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

A bit about sorting

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae and Mohammad Nekooei

Ways of sorting

» Selection-based sorts:
» find the next largest/smallest item and put in place
* build the correct list in order incrementally

* I[nsertion-based sorts:
e for each item, insert it into an ordered sublist
* build a sorted list, but keep changing it

« Compare-and-Swap-based sorts:
« find two items that are out of order, and swap them
» keep “improving” the list

Ways to rate sorting algorithms

* Efficiency
* What is the (worst-case) order of the algorithm?
* How does the algorithm deal with border cases?

* Requirements on Data
* Does the algorithm need random-access to data?
* Does it need anything more than “compare” and “swap”™?

e Space Usage
« Can the algorithm sort in-place, or does it need extra
Space?
» Stability

* |s the algorithm “stable”
(will it ever reverse the order of equivalent items?)

Selection-based Sorts

search for minimum here

* Selection Sort (slow)
» HeapSort (fast)

Selection Sorts

public void selectionSort(E[| data, int size, Comparator<E> comp) {

// for each position, from O up, find the next smallest item
/[and swap it into place
for (inti1=0; i<size-1; i++) {

iInt minindex = i;

for (int j=i+1; j<size; j++)
If (comp.compare(datafj], data[minindex]) < 0)

minindex=j;

swap(data, i, minindex);

Insertion-based Sorts

4

* Insertion Sort (slow)
 Shell Sort (pretty fast)

 Merge Sort (fast)
(Divide and Conqguer)

Compare and Swap Sorts

...and so on...

things bubble up quickly,
but bubble down slowly

* Bubble Sort (easy but terriblé performance)

* QuickSort

(very fast)

(Divide and Conguer)

Other Sorts

« Radix Sort (only works with certain data types)
* Permutation Sort (very slow)

Divide and Conquer Sorts

To Sort: °

. Split '

_ | Split |
« Sort each part (recursive) 7 plt
« Combine

Where does the
work happen?

* MergeSort:
* split is trivial
 combine does all the work

* QuickSort:
* split does all the work
* combine is trivial

MergeSort : the concept

/ N\
[TTTITTTTTITTITTIT] [TTTTITTITTTITTITITITIT]
/ N\ / N\

[(TLITII0] [LI O]
/ / AN I_}‘Q_I /[\{_I
C] CCI CIOC]

L]

Merge

[** Merge from[low..mid-1] with from[mid..high-1] into to[low..high-1.*/
private static <E>void merge(List<E> from, List<E> to, int low, int
mid, int high,
Comparator<E> comp){

Int index = low; // where we will put the item into "to”

Int indxLeft = low; // index into the lower half of the "from"
range

Int indxRight = mid; // index into the upper half of the "from"
range

while (indxLeft<mid && indxRight < high){
If (comp.compare(from.get(indxLeft), from.get(indxRight))
<=0)
to.set(index++, from.get(indxLeft++));
else
to.set(index++, from.get(indxRight++));

MergeSort — a wrapper method that starts it

* It looks like we an extra temporary array for each
“level” (how many levels are there?)

* Only need one (extra): at each layer, treat the other
array as “storage”

« We start with a wrapper to make this second array,
and fill it with a copy of the original data.

public static <E> void mergeSort(List<E> data,
Comparator<E> comp){

List<E> other = new ArrayList<E>(data);
mergeSort(data, other, 0, data.size(), comp);

MergESO I't - the recursive method

private static <E>void mergeSort(List<E> data, List<E> other,
int low, int high,
Comparator<E> comp){

// sort items from low..high-1, using the other array
If (high > low+1){
int mid = (low+high)/2;
/l mid = low of upper 1/2, = high of lower half.
mergeSort(other, data, low, mid, comp);
mergeSort(other, data, mid, high, comp);
merge(other, data, low, mid, high, comp);

« there are multiple calls to the recursive method in here.
- this will make a "tree" structure

« we swap other and data at each recursive call (= each “level”)

Sorting Algorithm costs:

 Insertion sort, Selection Sort:

* All slow (except Insertion sort on almost-sorted lists)
° O(n 2)

* Merge Sort
* log,(n) levels, n comparisons at each level to merge.
* therefore cost= O(nlog(n))

QuickSort

Uses Divide and Conquer, but does its work in the “split” step

Split the array into parts, by choosing a “pivot” item, and
making sure that:

all items < pivot are in the left part i note: it won't }

: : : : usually be an
all items > pivot are in the right part equal split
Then (recursively) sort each part

The work is done in the partition method:

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

QuickSort: simplest version

1. Choose
apvot: @ @000 0 000 00
0 1 2 3 4 5 6 7 8 9 10 11
2. Use pivot to O
partition the array: pivot
o 00000 0600 00
0 1 2 3 4 5 6 7 8 9 10 11
not yet sorted not yet sorted
s —"~ N - I

10

11

QuickSort: in-place version

1. Choose a pivot:

0 1 2 3 4 5 6 7 8 9 10 11
2. Use pivot to O
partition the array: pivot

not yet sorted not yet sorted
A A

~ ™ ~

0 1 2 3 4 5 6 7 8 9 10 11

low left high

(gets returned)

QuickSort

Here's how we start it off;

public static <E> void quickSort(List<E>] data, Comparator<E> comp) {

quickSort (data, 0, data.size(), comp);

QuickSort

public static <E> void quickSort(List<E>] data, Comparator<E> comp) {

quickSort (data, 0, data.size(), comp);
}

public static <E> void quickSort(List<E>] data, int low, int high,
Comparator<E> comp){

If (high-low < 2) {return;} // only one item to sort.
If (high-low < 4) { sort3(data, low, high, comp);} // only 2 or 3 items to sort.
else {
Int mid = partition(data, low, high, comp); // split: mid = boundary
quickSort(data, low, mid, comp);

quickSort(data, mid, high, comp);

QuickSort: partition

/** Partition into small items (low..mid-1) and large items (mid..high-1)

private static <E> int partition(List<E> data, int low, int high,
Comparator<E> comp){

E pivot = medianOf3(data, low, high-1, low+high)/2, comp);

int left = low-1;

int right = high;

while(left <= right){
do { left++; I/ on left, skip over items < pivot
} while (left<high &&comp.compare(data.get(left), pivot)< 0);

do { right--; // on right, skip over items > pivot
} while (right>=low && comp.compare(data.get(right), pivot)> 0);

If (left <right) { Collections.swap(data, left, right); }

}

return left;

) o 00000000 %0

0 1 2 3 4 5 6 7 8 9 10 11

QuickSort: cost

public static <E> void quickSort (List<E> data, intlow, int high,
Comparator<gE> comp) {
if (high > low +2) {
int mid = partition(data, low, high, comp);
guickSort(data, low, mid, comp);
guickSort(data, mid, high, comp);

}

Cost of Quick Sort:
three steps:
partition: has to compare (high-low) pairs
first recursive call
second recursive call

QuickSort Cost:

If Quicksort divides the array exactly in half, then:
« C(n) =log(n) xn
— n log(n) comparisons
= O(n log(n)) (best case)

If Quicksort divides the array into 1 and n-1:
« Cn) =n+(N-1)+(n-2)+(n-3)+...+2+1
=n(n-1)/2 comparisons
= O(n?) (worst case)

Average case?
- very hard to analyse.
- still O(nlog(n)), and very good.

Stable or Unstable? Almost-sorted?

- MergeSort:
= Stable: doesn’t jump any item over an unsorted region
= two equal items preserve their order
= Same cost on all input

= “natural merge” variant doesn’t sort already sorted regions
= will be very fast: O(n) on almost sorted lists

= Needs extra space

- QuickSort:

= Unstable: Partition “jumps” items to the other end
= two equal items likely to reverse their order

» Cost depends on choice of pivot.
= Simplest choice is very slow: O(n?) even on almost sorted lists
= Better choice (median of three) = O(n log(n)) on almost sorted lists

= In-place

	Slide 1: Data Structures and Algorithms XMUT-COMP 103 - 2024 T1 A bit about sorting
	Slide 2: Ways of sorting
	Slide 3: Ways to rate sorting algorithms
	Slide 4: Selection-based Sorts
	Slide 5: Selection Sorts
	Slide 6: Insertion-based Sorts
	Slide 7: Compare and Swap Sorts
	Slide 8: Other Sorts
	Slide 9: Divide and Conquer Sorts
	Slide 10: MergeSort : the concept
	Slide 11
	Slide 12: Merge
	Slide 13: MergeSort – a wrapper method that starts it
	Slide 14: MergeSort – the recursive method
	Slide 15: Sorting Algorithm costs:
	Slide 16: QuickSort
	Slide 17: QuickSort: simplest version
	Slide 18: QuickSort: in-place version
	Slide 19: QuickSort
	Slide 20: QuickSort
	Slide 21: QuickSort: partition
	Slide 22: QuickSort: cost
	Slide 23: QuickSort Cost:
	Slide 24: Stable or Unstable? Almost-sorted?

