
© Peter Andreae and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2024 T1

A bit about sorting

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

2

Ways of sorting

• Selection-based sorts:

• find the next largest/smallest item and put in place

• build the correct list in order incrementally

• Insertion-based sorts:

• for each item, insert it into an ordered sublist

• build a sorted list, but keep changing it

• Compare-and-Swap-based sorts:

• find two items that are out of order, and swap them

• keep “improving” the list

3

Ways to rate sorting algorithms

• Efficiency

• What is the (worst-case) order of the algorithm?

• How does the algorithm deal with border cases?

• Requirements on Data

• Does the algorithm need random-access to data?

• Does it need anything more than “compare” and “swap”?

• Space Usage

• Can the algorithm sort in-place, or does it need extra

space?

• Stability

• Is the algorithm “stable”

(will it ever reverse the order of equivalent items?)

4

Selection-based Sorts

0 1 2 3 4 5 6 7 8 9 10 11

• Selection Sort (slow)

• HeapSort (fast)

0 1 2 3 4 5 6 7 8 9 10 11

search for minimum here

5

Selection Sorts

public void selectionSort(E[] data, int size, Comparator<E> comp) {

// for each position, from 0 up, find the next smallest item

// and swap it into place

for (int i=0; i<size-1; i++) {
int minIndex = i;

for (int j=i+1; j<size; j++)

if (comp.compare(data[j], data[minIndex]) < 0)

 minIndex=j;

swap(data, i, minIndex);

}

}

0 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6 7 8 9 10 11

6

Insertion-based Sorts

• Insertion Sort (slow)

• Shell Sort (pretty fast)

• Merge Sort (fast)

 (Divide and Conquer)

0 1 2 3 4 5 6 7 8 9 10 11

0 1 3 5 6 7 8 10 112 4 9

7

Compare and Swap Sorts

• Bubble Sort (easy but terrible performance)

• QuickSort (very fast)

 (Divide and Conquer)

things bubble up quickly,

but bubble down slowly

0 1 2 3 4 5 6 7 8 9 10 11

...and so on...

8

Other Sorts

• Radix Sort (only works with certain data types)

• Permutation Sort (very slow)

• Random Sort (Generate and Test)

0 1 2 3 4 5 6 7 8 9 10 11

9

Divide and Conquer Sorts

To Sort:

• Split

• Sort each part (recursive)

• Combine

Where does the

work happen?

• MergeSort:

• split is trivial

• combine does all the work

• QuickSort:

• split does all the work

• combine is trivial

List

Sorted List

Split

Combine

SubList SubList

SortedSubList SortedSubList

Sort Sort

Split

Combine

SubList SubList

Sort Sort

SortedSubList SortedSubList

Split

Combine

SubList SubList

Sort Sort

SortedSubList SortedSubList

10

MergeSort : the concept

11

12

Merge
/** Merge from[low..mid-1] with from[mid..high-1] into to[low..high-1.*/

private static <E> void merge(List<E> from, List<E> to, int low, int

mid, int high,

 Comparator<E> comp){

int index = low; // where we will put the item into "to“

int indxLeft = low; // index into the lower half of the "from"

range

int indxRight = mid; // index into the upper half of the "from"

range

while (indxLeft<mid && indxRight < high){

if (comp.compare(from.get(indxLeft), from.get(indxRight))

<=0)

to.set(index++, from.get(indxLeft++));

else

to.set(index++, from.get(indxRight++));

}

// copy over the remainder. Note only one loop will do anything.

13

MergeSort – a wrapper method that starts it

• It looks like we an extra temporary array for each

“level” (how many levels are there?)

• Only need one (extra): at each layer, treat the other

array as “storage”

• We start with a wrapper to make this second array,

and fill it with a copy of the original data.

public static <E> void mergeSort(List<E> data,

Comparator<E> comp){

List<E> other = new ArrayList<E>(data);

mergeSort(data, other, 0, data.size(), comp);

}

14

MergeSort – the recursive method

private static <E> void mergeSort(List<E> data, List<E> other,
int low, int high,
 Comparator<E> comp){

// sort items from low..high-1, using the other array
if (high > low+1){

int mid = (low+high)/2;
// mid = low of upper 1/2, = high of lower half.

mergeSort(other, data, low, mid, comp);

mergeSort(other, data, mid, high, comp);

merge(other, data, low, mid, high, comp);
}

}

• there are multiple calls to the recursive method in here.

• this will make a "tree" structure

• we swap other and data at each recursive call (= each “level”)

15

Sorting Algorithm costs:
• Insertion sort, Selection Sort:

• All slow (except Insertion sort on almost-sorted lists)

• O(n 2)

• Merge Sort

• log2(n) levels, n comparisons at each level to merge.

• therefore cost = O(n log(n))

16

QuickSort

▪ Uses Divide and Conquer, but does its work in the “split” step

▪ Split the array into parts, by choosing a “pivot” item, and

making sure that:

▪ all items < pivot are in the left part

▪ all items > pivot are in the right part

▪ Then (recursively) sort each part

▪ The work is done in the partition method:

note: it won’t

usually be an

equal split

6 7 8 9 10 110 1 2 3 4 5

6 7 8 9 10 110 1 2 3 4 5

17

QuickSort: simplest version

1. Choose

a pivot:
6 7 8 9 10 110 1 2 3 4 5

pivot

6 7 8 9 10 110 1 2 3 4 5

2. Use pivot to

 partition the array:

6 7 8 9 10 110 1 2 3 4 5

not yet sorted not yet sorted

18

QuickSort: in-place version

1. Choose a pivot:

6 7 8 9 10 110 1 2 3 4 5

pivot

6 7 8 9 10 110 1 2 3 4 5

2. Use pivot to

 partition the array:

low highleft

(gets returned)

not yet sorted not yet sorted

19

QuickSort

Here's how we start it off:

public static <E> void quickSort(List<E>] data, Comparator<E> comp) {

 quickSort (data, 0, data.size(), comp);

}

20

QuickSort

public static <E> void quickSort(List<E>] data, Comparator<E> comp) {

 quickSort (data, 0, data.size(), comp);

}

public static <E> void quickSort(List<E>] data, int low, int high,

 Comparator<E> comp){

if (high-low < 2) { return; } // only one item to sort.

if (high-low < 4) { sort3(data, low, high, comp);} // only 2 or 3 items to sort.

else {

int mid = partition(data, low, high, comp); // split: mid = boundary

quickSort(data, low, mid, comp);

quickSort(data, mid, high, comp);

}

}

21

QuickSort: partition

/** Partition into small items (low..mid-1) and large items (mid..high-1)

private static <E> int partition(List<E> data, int low, int high,

 Comparator<E> comp){

E pivot =

int left = low-1;

int right = high;

while(left <= right){

do { left++; // on left, skip over items < pivot

} while (left<high &&comp.compare(data.get(left), pivot)< 0);

do { right--; // on right, skip over items > pivot

} while (right>=low && comp.compare(data.get(right), pivot)> 0);

if (left < right) { Collections.swap(data, left, right); }

}

return left;
}

6 7 8 9 10 110 1 2 3 4 5

data[low]; // simple but poor choice!medianOf3(data, low, high-1, low+high)/2, comp);

22

QuickSort: cost

public static <E> void quickSort (List<E> data, int low, int high,

 Comparator<E> comp) {

if (high > low +2) {

 int mid = partition(data, low, high, comp);

 quickSort(data, low, mid, comp);

 quickSort(data, mid, high, comp);

 }

}

Cost of Quick Sort:

• three steps:

• partition: has to compare (high-low) pairs

• first recursive call

• second recursive call

23

QuickSort Cost:

▪ If Quicksort divides the array exactly in half, then:

▪ C(n) = log(n) x n

 → n log(n) comparisons

 = O(n log(n)) (best case)

▪ If Quicksort divides the array into 1 and n-1:

▪ C(n) = n + (n-1) + (n-2) + (n-3) + … + 2 + 1

 = n(n-1)/2 comparisons

 = O(n2) (worst case)

▪ Average case?

▪ very hard to analyse.

▪ still O(n log(n)), and very good.

24

Stable or Unstable? Almost-sorted?

▪ MergeSort:

▪ Stable: doesn’t jump any item over an unsorted region
⇒ two equal items preserve their order

▪ Same cost on all input

▪ “natural merge” variant doesn’t sort already sorted regions
⇒ will be very fast: O(n) on almost sorted lists

▪ Needs extra space

▪ QuickSort:

▪ Unstable: Partition “jumps” items to the other end
⇒ two equal items likely to reverse their order

▪ Cost depends on choice of pivot.

▪ Simplest choice is very slow: O(n2) even on almost sorted lists

▪ Better choice (median of three) ⇒ O(n log(n)) on almost sorted lists

▪ In-place

	Slide 1: Data Structures and Algorithms XMUT-COMP 103 - 2024 T1 A bit about sorting
	Slide 2: Ways of sorting
	Slide 3: Ways to rate sorting algorithms
	Slide 4: Selection-based Sorts
	Slide 5: Selection Sorts
	Slide 6: Insertion-based Sorts
	Slide 7: Compare and Swap Sorts
	Slide 8: Other Sorts
	Slide 9: Divide and Conquer Sorts
	Slide 10: MergeSort : the concept
	Slide 11
	Slide 12: Merge
	Slide 13: MergeSort – a wrapper method that starts it
	Slide 14: MergeSort – the recursive method
	Slide 15: Sorting Algorithm costs:
	Slide 16: QuickSort
	Slide 17: QuickSort: simplest version
	Slide 18: QuickSort: in-place version
	Slide 19: QuickSort
	Slide 20: QuickSort
	Slide 21: QuickSort: partition
	Slide 22: QuickSort: cost
	Slide 23: QuickSort Cost:
	Slide 24: Stable or Unstable? Almost-sorted?

