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Ways of sorting

• Selection-based sorts:

• find the next largest/smallest item and put in place

• build the correct list in order incrementally

• Insertion-based sorts:

• for each item, insert it into an ordered sublist

• build a sorted list, but keep changing it

• Compare-and-Swap-based sorts:

• find two items that are out of order, and swap them

• keep “improving” the list
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Ways to rate sorting algorithms

• Efficiency

• What is the (worst-case) order of the algorithm?

• How does the algorithm deal with border cases?

• Requirements on Data

• Does the algorithm need random-access to data? 

• Does it need anything more than “compare” and “swap”?

• Space Usage

• Can the algorithm sort in-place, or does it need extra 

space? 

• Stability

• Is the algorithm “stable”

(will it ever reverse the order of equivalent items?)
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Selection-based Sorts

0 1 2 3 4 5 6 7 8 9 10 11

• Selection Sort (slow)

• HeapSort (fast)

0 1 2 3 4 5 6 7 8 9 10 11

search for minimum here
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Selection Sorts

public void selectionSort(E[ ] data, int size, Comparator<E> comp) {

// for each position, from 0 up, find the next smallest item 

// and swap it into place

for (int i=0; i<size-1; i++) {
int minIndex = i;

for (int j=i+1; j<size; j++)

if (comp.compare(data[j], data[minIndex]) < 0)

       minIndex=j;

swap(data, i, minIndex);

}

}

0 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6 7 8 9 10 11
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Insertion-based Sorts

• Insertion Sort (slow)

• Shell Sort (pretty fast)

• Merge Sort (fast)     

                  (Divide and Conquer)

0 1 2 3 4 5 6 7 8 9 10 11

0 1 3 5 6 7 8 10 112 4 9
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Compare and Swap Sorts

• Bubble Sort (easy but terrible performance)

• QuickSort (very fast)  

 (Divide and Conquer)

things bubble up quickly,

but bubble down slowly

0 1 2 3 4 5 6 7 8 9 10 11

...and so on...
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Other Sorts

• Radix Sort     (only works with certain data types)

• Permutation Sort (very slow) 

• Random Sort (Generate and Test) 

0 1 2 3 4 5 6 7 8 9 10 11
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Divide and Conquer Sorts

To Sort:

• Split

• Sort each part (recursive)

• Combine

Where does the

work happen?

• MergeSort:

• split is trivial

• combine does all the work

• QuickSort:

• split does all the work

• combine is trivial

List
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Combine

SubList SubList

SortedSubList SortedSubList

Sort Sort

Split

Combine

SubList SubList

Sort Sort

SortedSubList SortedSubList
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Combine

SubList SubList

Sort Sort

SortedSubList SortedSubList
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MergeSort : the concept
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Merge
/** Merge from[low..mid-1] with from[mid..high-1] into  to[low..high-1.*/

private static <E> void merge(List<E> from, List<E> to, int low, int 

mid, int high,

                                                    Comparator<E> comp){

int index = low;       // where we will put the item into "to“

int indxLeft = low;     // index into the lower half of the "from" 

range

int indxRight = mid;  // index into the upper half of the "from" 

range

while (indxLeft<mid && indxRight < high){

if (comp.compare(from.get(indxLeft), from.get(indxRight)) 

<=0)

to.set(index++, from.get(indxLeft++));

else

to.set(index++, from.get(indxRight++));

}

// copy over the remainder. Note only one loop will do anything.
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MergeSort – a wrapper method that starts it

• It looks like we an extra temporary array for each 

“level” (how many levels are there?)

• Only need one (extra):  at each layer, treat the other 

array as “storage”

• We start with a wrapper to make this second array, 

and fill it with a copy of the original data.

public static <E> void mergeSort(List<E> data, 

Comparator<E> comp){

List<E> other = new ArrayList<E>(data);

mergeSort(data, other, 0, data.size(), comp);

}
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MergeSort – the recursive method

private static <E> void mergeSort(List<E> data, List<E> other, 
int low, int high,
                                                        Comparator<E> comp){

// sort items from low..high-1, using the other array
if (high > low+1){

int mid = (low+high)/2;
// mid = low of upper 1/2, = high of lower half.

mergeSort(other, data, low, mid, comp);

mergeSort(other, data, mid, high, comp);

merge(other, data, low, mid, high, comp);
}

}

• there are multiple calls to the recursive method in here.

• this will make a "tree" structure

• we swap other and data at each recursive call (= each “level”)
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Sorting Algorithm costs:
• Insertion sort, Selection Sort:

• All slow (except Insertion sort on almost-sorted lists)

• O(n 2)

• Merge Sort

•  log2(n) levels,    n comparisons at each level to merge.

• therefore   cost =  O(n log(n) )
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QuickSort

▪ Uses Divide and Conquer, but does its work in the “split” step

▪ Split the array into parts, by choosing a “pivot” item, and 

making sure that: 

▪ all items < pivot are in the left part

▪ all items > pivot are in the right part

▪ Then (recursively) sort each part

▪ The work is done in the partition method:

note: it won’t 

usually be an 

equal split

6 7 8 9 10 110 1 2 3 4 5

6 7 8 9 10 110 1 2 3 4 5
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QuickSort: simplest version

1. Choose 

a pivot:
6 7 8 9 10 110 1 2 3 4 5

pivot

6 7 8 9 10 110 1 2 3 4 5

2. Use pivot to 

    partition the array:

6 7 8 9 10 110 1 2 3 4 5

not yet sorted not yet sorted
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QuickSort:  in-place version

1. Choose a pivot:

6 7 8 9 10 110 1 2 3 4 5

pivot

6 7 8 9 10 110 1 2 3 4 5

2. Use pivot to 

    partition the array:

low highleft

(gets returned)

not yet sorted not yet sorted
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QuickSort

Here's how we start it off:

public static <E> void quickSort( List<E>] data, Comparator<E> comp)  {

       quickSort (data,   0,   data.size(),   comp);

}
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QuickSort

public static <E> void quickSort( List<E>] data, Comparator<E> comp)  {

       quickSort (data,   0,   data.size(),   comp);

}

public static <E> void quickSort(List<E>] data, int low, int high, 

      Comparator<E> comp){

if (high-low < 2) { return; }    // only one item to sort. 

if (high-low < 4) { sort3(data, low, high, comp);} // only 2 or 3 items to sort. 

else {    

int mid = partition(data, low, high, comp);      // split:  mid = boundary

quickSort(data, low, mid, comp);

quickSort(data, mid, high, comp);

}

}
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QuickSort:  partition

/** Partition into small items (low..mid-1) and large items (mid..high-1)

private static <E> int partition(List<E> data, int low, int high, 

                                                Comparator<E> comp){

E pivot =

int left = low-1;

int right = high;

while( left <= right ){

do {  left++;                                 // on left, skip over items < pivot

} while (left<high &&comp.compare(data.get(left), pivot)< 0);

do { right--;                                 // on right, skip over items > pivot

} while (right>=low && comp.compare(data.get(right), pivot)> 0);

if (left < right)   { Collections.swap(data, left, right); }

}

return left;
}

6 7 8 9 10 110 1 2 3 4 5

data[low]; // simple but poor choice!medianOf3(data, low, high-1, low+high)/2, comp);
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QuickSort:  cost

public static <E> void quickSort  (List<E> data,   int low,   int high, 

                                                      Comparator<E> comp) {

if (high > low +2) {

   int mid = partition(data, low, high, comp);

   quickSort(data, low, mid, comp);

   quickSort(data, mid, high, comp);

 }

}

Cost of Quick Sort:

• three steps:

• partition:     has to compare (high-low) pairs

• first recursive call

• second recursive call
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QuickSort Cost:

▪ If Quicksort divides the array exactly in half, then:

▪ C(n) = log(n)  x n 

             → n log(n) comparisons   

  =  O(n log(n))                                           (best case)

▪ If Quicksort divides the array into  1  and n-1:

▪ C(n) = n + (n-1) + (n-2) + (n-3) + … + 2 + 1

           = n(n-1)/2  comparisons    

  = O(n2)                                                    (worst case)

▪ Average case?

▪ very hard to analyse.

▪ still  O(n log(n)), and very good.
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Stable or Unstable?   Almost-sorted?

▪ MergeSort:

▪ Stable:  doesn’t jump any item over an unsorted region
⇒  two equal items preserve their order

▪ Same cost on all input

▪ “natural merge” variant doesn’t sort already sorted regions
⇒ will be very fast: O(n)  on almost sorted lists 

▪ Needs extra space

▪ QuickSort:

▪ Unstable:  Partition “jumps” items to the other end
⇒  two equal items likely to reverse their order

▪ Cost depends on choice of pivot.

▪ Simplest choice is very slow: O(n2) even on almost sorted lists

▪ Better choice (median of three)  ⇒ O(n log(n)) on almost sorted lists

▪ In-place
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