
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2025 T1

Queues

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 2

Queues
• Collection of items in order

• like Lists and Stacks

• Main operations:
• enqueue: put item on the queue
• dequeue: remove item from front of the queue

• These operations should be efficient.
• Shouldn’t get much more expensive if the queue is very large

• A Queue is a Collection:
• THEREFORE: other operations – contains(…), remove(…), etc – also work

BUT, they are not efficient.

enqueue/offer/add

dequeue/poll/remove

peek

Frontback

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 3

Queue operations
• isEmpty(),
• size(),
• clear()

• offer(E item) enqueue
• add(E item) enqueue

• poll() → E dequeue (returns null if queue is empty)
• remove() → E dequeue (throws exception if queue is empty)

• peek() → E look at front (returns null if queue is empty)
• element() → E look at front (throws exception if queue empty)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 4

Queues and efficiency
• The main operators of queues should be efficient.

• the time it take to do them should be fast
• especially important when they grow in size <= a constant speed is needed!

• Let’s investigate how stacks can be implemented efficiently.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 5

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:
push/add ‘e’

head

Q w K r s Q q u s z Z v V p

stack.size()+1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 6

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:

• No changes to the stack other than an ’e’ was added at the end.
head

Q w K r s Q q u s z Z v V p e

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 7

Stacks and efficiency

• You can use an ArrayList to implement a Stack (LIFO) efficiently:

• Again only the end changes, nothing else
• push and pop at the end� O(1)

• Stacks are naturally efficient with an ArrayList!

returns ‘e’
stack size -1

pop/remove

head

Q w K r s Q q u s z Z v V p

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 8

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast � O(1)

enqueue/offer/add

dequeue/poll/removeheadtail
F r r j T a Q r

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 9

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast � O(1)
• Enqueue requires shifting every item up one place to add

• It “costs” the current length (n) to move � O(n)

enqueue/offer/add ‘m’

dequeue/poll/removeheadtail
F r r j T a Q r

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 10

Queues and efficiency
• What about a Queue (FIFO) ?

• Dequeue works like a stack, so is fast � O(1)
• Enqueue requires shifting every item up one place to add

• It “costs” the current length (n) to move � O(n)

enqueue/offer/add

dequeue/poll/removeheadtail
F r r j T a Q rm

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 11

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast � O(1)

enqueue/offer/add

dequeue/poll/remove
head tail

f F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 12

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast � O(1)
• Dequeue requires shifting every item down one place � O(n)

enqueue/offer/add

dequeue/poll/remove
head tail

f F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 13

Queues and efficiency
• What about a Queue, The other way round?

• Enqueue is like push on a stack, so it is fast � O(1)
• Dequeue requires shifting every item down one place � O(n)

• Big Oh notation:
• O(1) : fixed number of steps, regardless of how big the collection is
• O(n) : number of steps proportional to the size of the collection.

enqueue/offer/add

dequeue/poll/remove
head tail

F g h w W d

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 14

Queues and efficiency
• Using an array and two indexes:

• Enqueue:
• Get tail
• tail++
• Add new value at new tail

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 15

Queues and efficiency
• Using an array and two indexes:

• Enqueue:
• Get tail
• tail++
• Add new value at new tail

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g Q

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 16

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast � O(1)
• Dequeue:

• Return value at head
• head++

enqueue/offer/add

dequeue/poll/remove
head tail

A s T o g Q

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 17

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast � O(1)
• Dequeue:

• Return value at head
• head++

enqueue/offer/add

dequeue/poll/remove
head tail

s T o g Q

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 18

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast � O(1)
• Dequeue is fast � O(1)

enqueue/offer/add

dequeue/poll/remove
head tail

s T o g Q

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 19

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast � O(1)
• Dequeue is fast � O(1)

• What about space? (memory)

enqueue/offer/add

dequeue/poll/remove
head tail

P X z 4 l “

A

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 20

Queues and efficiency
• Using an array and two indexes:

• Enqueue is fast � O(1)
• Dequeue is fast � O(1)

• What about space? (memory)
• “Wrap around” at the end;

A

dequeue/poll/remove

he
ad:

9

tail:
1

f

0

A

1

2

3

4

5 6 7 8

P

9

X

10

Z

11

4

12

I

13

“

14

enqueue/offer/add

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 21

Java Implementations
• Java classes for Queue:

• ArrayDeque Queue<Patient> waitingRoom = new ArrayDeque<Patient>();
• LinkedList

• ArrayDeque is actually a kind of Deque – an extension of Queue:
• Deque = Double Ended Queue
• Add or remove at either end.
• Includes Stacks and Queue

• offer(e) = offerLast(e)
• push(e) = offerFirst(e)
• poll() = pop() = pollFirst()
• - = pollLast()
• peek() = peekFirst()
• - = peekLast()

