
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2025 T1 

Algorithms: recursion

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 2

Problem Solving / Algorithm Design
A Key principle of problem solving:
• Break problems up into smaller chunks to solve independently

EG: Iteration:
• To do something to lots of items:

• work out how to do it to a “typical” item
• put it in a loop



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 3

Algorithm design using iteration

public void drawBubbles(double x, double y, int n){
for (int i = 0; i<n; i++ ) {

this.drawBubble(x, y, 15);
y = y - 20;

}
}

public void drawBubble(double x, double y, double size){
UI.setColor(Color.blue);
UI.fillOval(x, y, size, size);

}



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 4

Algorithm Design with Recursion
Break up a problem into “the first” and “the rest”
• where “the rest” is a smaller version of the same problem.

• � can use the same method:

public void drawBubbles(double x, double y, int n){

// draw one bubble
this.drawBubble(x, y, 15);

// if there are any remaining bubbles
if ( n > 1 )   {

// draw them
this.drawBubbles(x, y-20, n-1);

}
}

Recursive call

Must have condition 
to prevent infinite 
recursion:
Need a “Base case” 
with no recursive call

x, y, 8

x, y-20, 7

x, y-40, 6

x, y-60, 5

x, y-80, 4

x, y-100, 3

x, y-120, 2

x, y-140, 1



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 5

Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

• � can use the same method:

public void drawBubbles(double x, double y, int n){
if ( n == 1 )   {

this.drawBubble(x, y, 15);
} 
else if ( n > 1 )   {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 6

Algorithm Design with Recursion
Break up a problem into “first half” and “second half”
• where each half is a smaller version of the same problem.

• � can use the same method:

public void drawBubbles(double x, double y, int n){
if ( n == 1 )   {

this.drawBubble(x, y, 15);
} 
else if ( n > 1 )   {

this.drawBubbles(x, y, n/2);
this.drawBubbles(x, y-n/2*20, (n – n/2));

}
}

x, y, 8

x, y, 4

x, y-80, 4

x, y, 2

x, y-40, 2

x, y-80, 2

x, y-120, 2

x, y, 1

x, y-20, 1

x, y-40, 1

x, y-60, 1

x, y-80, 1

x, y-100, 1

x, y-120, 1

x, y-140, 1



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 7

Recursion – An Example 
• How many ways are there to arrange n books in a line?
• This number is called n factorial and is usually written as n!
• Example: 3! = 3 * 2 * 1 = 6
• For any positive integer n it is defined as the product of all integers 

from 1 to n inclusive:
n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1  

• This definition can also be expressed recursively:
1! = 1
n! = n * (n-1)!

• That is, a factorial is defined in terms of another (smaller) factorial 
until the base case of 1! is reached

• Note: some mathematical formulas have a very elegant recursive 
definition



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 8

Factorial – Using Iteration
public int fact(int n){
 

int result = 1;
for (int  i = 1; i<=n; i++ ) {
       result *= i;
}
return result;

}

UI.println(fact(5));

120



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 9

Factorial – Using Recursion
public int fact(int n){
 

if (n == 1) return 1; 

return n * fact(n-1);
}

//The runtime system creates a stack of results



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 10

Recursion vs Iteration
• Iteration:

• break problem into sequence of the typical case
• identify the typical case  (body)
• identify the increment to step to the next case
• identify the keep-going or stopping condition
• identify the initialisation

• Recursion:  (simple)
• break problem into  first  and  rest
• identify the first case
• identify the recursive call for the rest 

• work out the arguments for the rest
• identify when you should do the recursive call.

• make sure there is a stopping case (base case)
• may need a wrapper method to initialise



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 11

“first” might be split in multiple parts
• Example:  Print an “onion” :   ( ( ( ( ( ( ( ) ) ) ) ) ) )

public void onion (int layers){
UI.print( “ (“ );
if (layers > 1)  {  this.onion(layers-1); }
UI.print( “ )“ );

}

open 

close 

do the inside 



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 12

Recursion at work
onion(4) ⇒ 

public void onion (int layers){
UI.print( “(“ );
if (layers > 1)  { this.onion(layers-1); }
UI.print( “)“ );

}

public void onion (int layers){
  UI.print( “(“ );
  if (layers > 1) { this.onion(layers-1); }
  UI.print( “)“ );

}

4 .
✔
✔
✔

( ( ( ( ) ) ) )

public void onion (int layers){
  UI.print( “(“ );
  if (layers > 1) { this.onion(layers-1); }
  UI.print( “)“ );

}

3 .
✔
✔
✔

public void onion (int layers){
  UI.print( “(“ );
  if (layers > 1) { this.onion(layers-1); }
  UI.print( “)“ );

}

2 .
✔
✔
✔

public void onion (int layers){
  UI.print( “(“ );
  if (layers > 1) { this.onion(layers-1);}
  UI.print( “)“ );

}

1 .
✔
✔
✔



© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 13

Recursion and Fractals
• Fractals are geometric patterns with repeated structure at multiple levels:

Simple examples:
• Fractal Line

• Sierpinski Triangle

Sierpinski triangle image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license (https://creativecommons.org/licenses/by-sa/3.0/deed.en). 
Attribution: Beojan Stanislaus

https://creativecommons.org/licenses/by-sa/3.0/deed.en

