
© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

Data Structures and Algorithms
XMUT-COMP 103 - 2025 T1

Recursion and Algorithm Complexity

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 2

Recursion and Fractals
• Fractals are geometric patterns with repeated structure at multiple levels:

Simple examples:
• Fractal Line

• Sierpinski Triangle

Sierpinski triangle image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license (https://creativecommons.org/licenses/by-sa/3.0/deed.en).
Attribution: Beojan Stanislaus

https://creativecommons.org/licenses/by-sa/3.0/deed.en

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 3

Multiple Recursion
• “Pouring” Paint in a painting program:

• colour this pixel
• spread to each of the neighbour pixels

• colour the pixel
• spread to its neighbours

• colour the pixel
• spread to its neighbours

• …

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 4

Spreading Paint
private int ROWS = 25;
private int COLS = 35;
private Color[][] grid = new Color[ROWS][COLS]; // the grid of colours,

/** Spread new colour in place of oldColour on this cell and all its adjacent cells*/
public void spread(int row, int col, Color newColour, Color oldColour){

if (row<0 || row>=ROWS || col<0 || col >=COLS) { return; }
if (! grid[row][col].equals(oldColour)) { return; }
setPixel(row, col, newColour);
spread(row-1, col, oldColour, newColor);
spread(row+1, col, oldColour, newColor);
spread(row, col-1, oldColour, newColor);
spread(row, col+1, oldColour, newColor);

}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 5

Recursion that returns a value.
• What if the method returns a value?

⇒ get value from recursive call, then do something with it
typically, perform computation on value, then return answer.

• Compound interest
• value at end of n th year =

value at end of previous year * (1 + interest).

value(deposit, year) = deposit [if year is 0]
 = value(deposit, year-1) * (1+rate)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 6

Recursion returning a value
/** Compute compound interest of a deposit */

public double compound(double deposit, double rate, int years){
if (years == 0)

return deposit;
else

return (this.compound(deposit, rate, years-1) * (1 + rate));
}

alternative :
public double compound(double deposit, double rate, int years){

if (years == 0)
return deposit;

else {
double prev = this.compound(deposit, rate, years-1);
return prev * (1 + rate);

}
}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 7

Recursion with return: execution
public double investment(double deposit, double rate, int year){

if (year == 0) { return deposit; }
else {

double prev = this.investment(deposit, rate, year-1); ← step 1
return prev * (1 + rate); ← step 2
}

}
 investment(1000, 0.1, 4)

 investment(1000, 0.1, 3) * 1.1

 investment(1000, 0.1, 2) * 1.1

 investment(1000, 0.1, 1) * 1.1

investment(1000, 0.1, 0) * 1.1
1000

1100

1210

1331

1464.1

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 8

Multiple Recursion
• Draw a recursive arch-wall:

• Consists of an arch with two half size arch-walls on top of it.

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 9

Multiple Recursion: ArchWall
• to draw an ArchWall of given base size (wd,ht):

• draw a base arch of size (wd,ht)
• if wd is not too small

• draw a half size archwall on the left
• draw a half size archwall on the right

public void archWall (int left, int base, int wd, int ht){
this.drawArch(left, base, wd, ht);
if (wd > 20) {

int w = wd/2; // width of smaller arch walls
int h = ht/2; // height of smaller arch walls
int mid = left+w; // x pos of right arch wall
int top = base-ht; // base of smaller arch walls
this.archWall(left, top, w, h); // left half
this.archWall(mid, top, w, h); // right half

}
}

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 10

Tracing the execution:
 archWall(10, 300, 80, 60)

drawArch aw(10, 240, 40, 30) aw(50,240,40,30)

drawArch

aw(10,210,20,15)

aw(30,210,20,15)

drawArch

aw(50,210,20,15)

aw(70,210,20,15)drawArch

drawArch

drawArch

drawArch

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 11

Analysing Costs (in general)
How can we determine the costs of a program?

• Time:
• Run the program and count the milliseconds/minutes/days.
• Count number of steps/operations the algorithm will take.

• Space:
• Measure the amount of memory the program occupies.
• Count the number of elementary data items the algorithm stores.

• Applies to Programs or Algorithms? Both.
• programs � “benchmarking”
• algorithms � “analysis”

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 12

What is a good algorithm?
Obviously needs to do what is expected consistently. However most problems can be
solved in many ways. What is most important?
• Clarity - easy to read/implement
• Efficiency - the cost of running it

Clarity is relatively simple to measure. Find somebody else to read you code.

But how do we measure efficiency of an algorithm?

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 13

Benchmarking: program cost
Measure:

• actual programs, on real machines, with specific input
• measure elapsed time

• System.currentTimeMillis ()
→ time from the system clock in milliseconds

• measure real memory usage

Problems:
• what input? ⇒ use large data sets

don’t include user input
• other users/processes? ⇒ minimise

average over many runs
• which computer? ⇒ specify details

• how to compare cross-platform? ⇒ measure cost at an abstract level

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 14

Analysis: Algorithm “complexity”
• Abstract away from the details of

• the hardware, the operating system
• the programming language, the compiler
• the specific input

• Measure number of “steps” as a function of the data size
• best case (easy, but not interesting)
• worst case (usually easy)
• average case (harder)

• The precise number of steps is not required
• 3.47 n2 - 67n + 53 steps
• 3n log(n) + 5n - 3 steps

• Rather, we are interested in how the cost grows with data size on large data

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 15

Big-O Notation
• “Asymptotic cost”, or “big-O” cost describes how cost grows with large input size
• Only care about large input sets

• Lower-order terms become insignificant for large n

•We care about how cost grows with input size
• Don’t care about constant factors
• Multiplication factors (3, 102, 3 and 12 below) don’t tell us how things “scale up”
• Lower-order terms become insignificant for large n

3.47 n2 + 102n + 10064 steps � O(n2)

3n log n + 12n steps � O(n log n)

© Peter Andreae, Karsten Lundqvist, and Mohammad Nekooei

COMP103: 16

How the different costs grow

 n: size of input

