Three ways to look at a microprocessor

• What a VLSI (very large-scale integration) chip designer sees:

VLSI Design

Core i7 die

• What a PCB (printed circuit board) designer sees:

• What a programmer sees:

Programming model of a 6809 microprocessor

General block diagram of a microprocessor core.

A microprocessor is made up of a series of interconnected functional units. All controlled by a central timing and control unit that behaves like a finite state machine.

Components of a microcomputer

• A microcomputer is built up from a microprocessor, some memory, and several I/O peripherals. These all communicate via a parallel bus which consists of an **Address** bus, a **Data** bus, and a **Control** bus.

How does a microprocessor work?

- 1. The microprocessor fetches an instruction. We will ignore how it does this for now.
- This instruction tells the microprocessor what to do.
 For example, it might perform an XOR operation.
- 3. The microprocessor executes the instruction, and this process repeats where a new instruction is fetched.

Fetching an instruction How do we fetch an instruction?

In the general block diagram we had a **program counter**.

The program counter is a register (16-bits wide for small microprocessors) which contains the **address** in memory of the next instruction to be executed.

Fetching an instruction How do we fetch an instruction?

To fetch an instruction the following process is used;

- 1. the microprocessor places the address contained in the program counter onto the address bus.
- 2. A read signal is then set in the control bus and the memory responds by placing the data (instruction) onto the data bus.
- 3. The microprocessor then loads this instruction into the instruction register. This completes the fetch.

Executing an instruction

In order to execute the instruction, the microprocessor must first **decode** the instruction and then perform the appropriate operations.

For example, the instruction may have been to increment (add 1) the number contained in the accumulator.

For the 8051 series microprocessor, this instruction called a "machine code", has the hexadecimal code 04. This has a corresponding abbreviated description, called a Mnemonic, "INCA".

Executing an instruction

There are several different types of instructions that are possible, and these are usually summarised in a table with corresponding Mnemonics. (at_c51ism.pdf)

Mnemonics are a more convenient way of describing the program operations and are the main part of an assembly language.

A machine code program

The program consists of a series of machine code instructions that are usually placed sequentially in memory.

🍎 Mer	nory	/ du	mp														×
2FF0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
3000	AF	21	F4	31	CD	lF	31	21	EB	31	CD	lF	31	CD	89	46	
3010	21	00	50	11	FO	03	CD	8F	46	21	00	58	11	FF	07	36	
3020	70	23	1B	7B	B2	20	F8	CD	98	46	CD	В9	46	CD	ЗE	00	
3030	CD	1B	00	FE	53	CA	ЗF	30	FE	31	CA	00	00	18	Fl	06	
3040	BE	AF	21	2C	31	77	23	10	FC	ЗE	18	32	FE	31	21	50	
3050	DO	11	98	03	CD	8F	46	AF	32	26	31	32	4F	31	21	EB	
3060	31	CD	lF	31	32	F7	31	32	F8	31	ЗE	03	32	25	31	21	
3070	СВ	52	22	27	31	ЗE	08	32	F9	31	CD	8D	47	OE	16	AF	
3080	32	DE	31	CD	52	41	CD	95	33	ЗE	01	32	2B	31	ЗE	08	
3090	32	D9	31	AF	32	DB	48	32	DC	48	32	DF	48	32	DE	48	
30A0	32	$\mathtt{D}\mathtt{D}$	48	21	00	00	22	4A	31	22	4D	31	21	00	01	22	
30B0	54	31	11	56	31	CD	A8	35	11	6F	31	CD	A8	35	11	88	
30C0	31	CD	A8	35	11	Al	31	CD	A8	35	11	BA	31	CD	A8	35	
30D0	11	00	00	AF	CD	33	00	CD	ЗE	00	21	56	31	11	17	00	
3020	19	36	20	11	19	00	19	36	30	19	36	50	19	36	60	19	
3070	36	20	CD	ВF	48	СЗ	01	32	06	13	21	63	DO	11	27	00	
3100	ЗЕ	76	77	19	10	FC	06	13	21	64	DO	11	29	00	ЗE	77	
3110	77	19	10	FC	06	28	OE	зC	21	28	DO	CD	56	ЗD	С9	77	
3120	23	77	23	77	С9	03	00	BA	D2	00	00	01	00	01	01	03	
3130	00	8B	50	02	OD	00	lF	зc	OA	04	ЗE	00	00	20	зc	31	
3140	зC	8B	53	20	00	00	00	17	54	00	OE	00	01	00	00	03	
3150	FF	DO	00	00	00	01	00	00	00	00	00	00	00	00	00	00	
3160	00	00	00	00	00	00	00	00	00	00	00	00	00	20	00	00	
3170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	-

An assembly languarge program

Large machine code programs are impossible to interpret so we use Mnemonics and formatting to show program structure.

ROM Address	Machine codes	Label	Assembly statements
0000	7A 10		MOV R2, #10H
0002	7B 15		MOV R3, #15H
0004	74 20		MOV A, #20H
0006	2A		ADD A, R2
0007	F5 F0		MOV B, A
0009	2B		ADD A, R3
000A	F5 50		MOV 50H, A
000C	80 FE	HERE :	SJMP HERE