
8051: BLOCK DIAGRAM

CLOCK SOURCE I/O PORTS

PROGRAM STORAGE

PR
O

G
R

A
M

 E
XE

C
U

TI
O

N



CLOCK SOURCE
• 8051 programs are run sequentially, one instruction executing after the previous one.

• A clock source is needed to increment a program counter (discussed later).
• Other functions within the microcontroller (timers, communications, etc.) need to 

operate synchronously as well.
• To make sure that all of these operate synchronously, the 8051 uses a master 

oscillator.
• The 8051’s oscillator outputs a square wave. This square wave’s period is determined by a 

relatively stable crystal (external).

OSCILLATOR HARDWARE 
(internal, generates square 

wave from crystal’s oscillation)

Crystal,
12 MHz

• Many modern processors can 
execute one instruction per clock 
cycle. (or more!)
• The 8051 requires 12 clock 

cycles per “machine cycle”.
• Instructions on the 8051 

require 1 or 2 machine 
cycles

• Given a 12 MHz clock, this 
means that we can execute 0.5-
1 million instructions per second 
(MIPS).



MACHINE CYCLE
1 Clock Pulse

MACHINE CYCLE (12 Clock Pulses)

Given a 40 MHz Crystal, find the time required for one 
machine cycle.

40 MHz / 12 = 3.33 MHz
1/3.33 MHz = 0.30 μs

The oscillator generates clock 
pulses which are converted to 
machine cycles (1/12 clock 
pulses). 
The CPU (etc.) is sequenced 
by these machine cycles. 



8051 CPU
8051 CPU block diagram

ALU: Arithmetic Logic 
Unit

Processes the values of 
TMP1 and TMP2 

registers.
Register: An accessible 
amount of storage that 
may be quickly acted 

upon by the CPU



8051 ACCUMULATOR
• ACCUMULATOR (ACC)

• Often referred to as Register A
• Results of ALU operations are 

stored to this register.
• 8-bit (1 byte)
• Many, many instructions on 

the 8051 make use of the A 
register.

• Values in the accumulator may 
be further processed (sent 
back to the ALU, etc.)
• The accumulator value may 

also be stored to other 
memory locations.
• Very common!



8051 B REGISTER
• B REGISTER

• Like the A register (ACC), B 
Register is 8-bit.

• Used by only two instructions 
(MUL AB and DIV AB)
• Multiply the values of A and 

B registers
• Divide the values of A and B 

registers
• The B register may also be 

used as a more general 
purpose storage register.



8051 PROGRAM COUNTER
• PROGRAM COUNTER (PC)

• Unlike previously discussed 
registers, this is 2-byte (16 bit)
• 0000 0000 0000 0000

• The program counter holds the 
address of the next instruction to 
be executed.
• When the 8051 is booted up, 

by default the program counter 
is set to 0x 00 00

• If an instruction makes use of 1 
byte, the PC is incremented by 
1.
• Some instructions require 2 

(or 3) bytes, which result in 
the PC incrementing by 2 or 
3 to move past these to the 
next instruction.



8051 DATA POINTER
• DATA POINTER (DPTR)

• User-accessible 2-byte register
• Typically used to access external 

memory.
• 2^16 bits of memory may be 

addressed.
• The DPTR may also be used 

to store 2-byte values 
conveniently.



8051 INPUT/OUTPUT PORTS
• Microcontrollers are all about 

interfacing with the world around 
them.
• They typically feature an 

extensive number of I/O ports.
• The 8051 features 4 8-bit I/O 

ports.
• P0, P1, P2, P3
• These pins default to input; 

you must specify if you wish 
them to be set up as 
outputs.
• This is done by simply 

writing to the port.





The programming 
model shows all 
the registers that 
are available to the 
software 
developer. Notice 
that the registers 
are all assigned 
addresses apart 
from the program 
counter.

The AT89C51
 micro controller
core



CONCEPTUALISING A 
PROGRAM
• As engineers, we’re often given 

tasks and are expected to 
practically realise them.
• “Make a robot that sweeps the 

floor!”
• As embedded systems engineers, 

we need to be able to:
• Take a very high-level goal…
• … and rationalise it with the 

tools that we have available.
• If we are told: “Turn a light on and 

off every one second!”…
• … we must figure out how to 

do that with the available tools.

HIGH LEVEL GOAL: Turn a 
light on and off every one 
second. (1 second on, 1 

second off)

Find appropriate hardware:
We have access to the 8051… Does it 

have the ability to fulfil this goal?

Explore the hardware’s architecture to 
understand how to use the system’s 

functions.

Select a means by which this hardware 
may be programmed to fulfil the high 

level goal… then do it!



PROGRAMMING LANGUAGE 
HIERARCHIES
• Computer programming languages may be thought of as high-level or low-level.

• High-level: high levels of abstraction between language and hardware.
• C, Python, Javascript, LabView, Lua, C#, Java, Ada, Smalltalk, Swift, Forth…

• There are varying levels of abstraction: C has less than, say, Javascript
• Low-level: Programming commands are very closely related to the hardware’s actual 

operation.
• Assembly languages are considered low-level: often one line per instruction cycle. 

Machine code is the lowest of all.

Highly abstracted: LabView, Max/MSP, 
JavaScript

Moderately abstracted: C, C++

Low abstraction: Assembly language, 
machine code

Faster to program, 
easier to debug, more 
portable, and myriad 

other advantages

Fast execution, can be 
deterministic, affords 

understanding of 
hardware

HIGH LEVEL
LOW LEVEL



ASSEMBLY 
LANGUAGES
• Every different computer architecture has unique commands that allow it to execute 

programs.
• At the very lowest level, these are electrical signals that correspond to LOGIC HIGH 

and LOGIC LOW (0 or 1). Groups of these form instructions used by the computer.
• Machine code might look like this: 10010111 10011101 11101110 10011111

• This is very hard for most mortals to read, understand, debug, and expand
• These instructions and memory locations may be represented by mnemonics: 

easier-to-read and easier-to-remember codes that represent the machine code.

MNEMONIC MACHINE CODE (BINARY)

NOP 0000 0000

ADD A, R3 0010 1011



BINARY, HEXADECIMAL, 
DECIMAL
• We’re used to counting in base-10 (decimal, 0d): this is because we have 10 fingers!

• Computers that use HIGH/LOW logic utilise a base-2 scheme: binary (0b)
• It can get very clunky and verbose to represent digital systems using binary: you end up 

with lots and lots of 0’s.
• To make things more compact, we often use hexadecimal (0x or #nH).

• This is a counting system that goes from 0d0 to 0d16 (0x0 to 0xF)
• 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
• 1 hexadecimal number takes the place of 4 binary numbers.

• These 4 binary numbers form half of a byte, often called a ‘nibble’
• 0b0000 0000 is the same as 0x0 0x0

• Hexadecimal is commonly used in low-level software development: machine codes and 
addresses are easily represented this way.

MNEMONIC MACHINE CODE (0b) MACHINE CODE (0x)

DIV AB 1000 0100 0x84

MOV A,#data 0111 0100 0x74



CISC VS. RISC
• Instruction set: the collected instructions (in machine code) that are 

executable by a CPU.
• CISC: Complex instruction set.

• Many detailed operations that allow for single instructions to have fine-
grained control over the computer.

• Common in many early computers…
• Good for low-level programming, as fewer commands are needed.
• Pentium, 8051, etc. are CISC 

• RISC: Reduced instruction set
• As high-level languages became prevalent in the 1980’s and 1990’s, there 

was less need for very specific processor instructions.
• Compilers could make use of a restricted (and fast!) instruction set to 

efficiently realise high-level programs.
• ARM processors are the most prevalent RISC processors today.
• Assembly language programs for CISC systems are often relatively 

human readable. RISC assembly language programs are significantly 
less so. 



8051 INSTRUCTIONS
• 8051 instructions are one byte, and are often organised in a table with the 

high nibble on one axis and the low nibble on another: 
https://www.win.tue.nl/~aeb/comp/8051/set8051.html
• In the Lab Exercise, you will find a PDF called at_c51ism.pdf (note that 

the axes in this document are arranged opposite to those in the above 
URL)
• This contains a detailed list of the 8051’s instructions. You are 

strongly encouraged to explore this document.
• Further resources:

• KEIL 8051 instruction set reference: 
http://www.keil.com/support/man/docs/is51/is51_instructions.htm

• Instructions organised by function: 
https://www.engineersgarage.com/tutorials/8051-instruction-set

https://www.win.tue.nl/%7Eaeb/comp/8051/set8051.html
http://www.keil.com/support/man/docs/is51/is51_instructions.htm
https://www.engineersgarage.com/tutorials/8051-instruction-set


8051 SELCECTED 
INSTRUCTIONS

INSTRUCTION 
MNEMONIC SYNTAX Example 

OpCode
Number 
of bytes Notes

NOP NOP 0x00 1 Causes no operation 
that cycle

MUL MUL AB 0xA4 1 Multiply accumulator 
by B

MOV MOV operand1, 
operand2 0x74 1-3 Copies the val. of 

operand1 to operand2 

INC INC register 0x04 1-2 Increments the value 
of the register by 1

• You aren’t expected to memorise the 8051’s instruction set.
• Should the test contain instruction set-related questions, you will be provided with 

reference materials that you may consult during the test.


	8051: BLOCK DIAGRAM
	CLOCK SOURCE
	MACHINE CYCLE
	8051 CPU
	8051 ACCUMULATOR
	8051 B REGISTER
	8051 PROGRAM COUNTER
	8051 DATA POINTER
	8051 INPUT/OUTPUT PORTS
	Slide Number 40
	Slide Number 41
	CONCEPTUALISING A PROGRAM
	PROGRAMMING LANGUAGE HIERARCHIES
	ASSEMBLY LANGUAGES
	BINARY, HEXADECIMAL, DECIMAL
	CISC VS. RISC
	8051 INSTRUCTIONS
	8051 SELCECTED INSTRUCTIONS

