8051: BLOCK DIAGRAM

INT1*
INTO*

Timer 2 (8032/8052)
e 128 bytes] e oy 1| Tl
RAM : : 0 11 03s05)

8032:8052) ¢ | ! 1

128 by) 4K - 8051 | I
-
4

Timer 0
Senal Port

Tes
RAM) 8K - 8052
— -A- L___J

Z
O
I_
D
O
1]
>
L]
=
<
o
Q)
O
ha
o

RXD*
¥ Alternate pm assignments for P1 and P3

/0 PORTS

CLOCK SOURCE

® 8051 programs are run sequentially, one instruction executing after the previous one.
® A clock source is needed to increment a program counter (discussed later).
® Other functions within the microcontroller (timers, communications, etc.) need to
operate synchronously as well.

® To make sure that all of these operate synchronously, the 8051 uses a master
oscillator.

® The 8051’s oscillator outputs a square wave. This square wave’s period is determined by a
relatively stable crystal (external).

® Many modern processors can
OSCILLATOR HARDWARE NN execute one instruction per clock
(internal, generates square ~ Qe cycle. (or more!)
wave from crystal’s oscillation) § = =" * The 8051 requires 12 clock
cycles per “machine cycle”.
® |nstructions on the 8051
require 1 or 2 machine
cycles
® Given a 12 MHz clock, this
means that we can execute 0.5-
1 million instructions per second
(MIPS).

MACHINE CYCLE

MACHINE CYCLE (12 Clock Pulses)

Given a 40 MHz Crystal, find the time required for one The oscillator generates clock

machine cycle.

pulses which are converted to
machine cycles (1/12 clock

40 MHz / 12 = 3.33 MHz pulses).

1/3.33 MHz =

The CPU (etc.) is sequenced
by these machine cycles.

8051 CPU ™

Block Diagram 3051 CPU block diagram

i i
i T

PORT
LATCH
4

ALU: Arithmetic Logic
Unit
Processes the values of
TMP1 and TMP2
registers.
Register: An accessible
amount of storage that
may be quickly acted
upon by the CPU

8051 ACCUMULATOR

* ACCUMULATOR (ACC)
Block Dagram | o ® Often referred to as Register A
* Results of ALU operations are
stored to this register.
® 8-bit (1 byte)
® Many, many instructions on
the 8051 make use of the A
register.
® Values in the accumulator may
be further processed (sent
back to the ALU, etc.)
® The accumulator value may
also be stored to other
memory locations.
® Very common!

8051 B REGISTER

AlmE] ® B REGISTER
Block Diagram N ® Like the A register (ACC), B
- - Register is 8-bit.
® Used by only two instructions
(MUL AB and DIV AB)
® Multiply the values of A and
B registers
® Divide the values of A and B
registers
® The B register may also be
used as a more general
purpose storage register.

8051 PROGRAM COUNTER

®* PROGRAM COUNTER (PC)
Block Diagram ® Unlike previously discussed
registers, this is 2-byte (16 bit)
® 0000 0000 0000 0000
® The program counter holds the
address of the next instruction to
be executed.
® When the 8051 is booted up,
by default the program counter
IS set to Ox 00 00
® If an instruction makes use of 1
byte, the PC is incremented by
1.
® Some instructions require 2
(or 3) bytes, which result in
the PC incrementing by 2 or
3 to move past these to the
next instruction.

8051 DATA POINTER

® DATA POINTER (DPTR)
Block Diagram | o ® User-accessible 2-byte register
* Typically used to access external
memory.
® 2716 bits of memory may be
addressed.
® The DPTR may also be used
to store 2-byte values
conveniently.

8051 INPUT/OUTPUT PORTS

® Microcontrollers are all about
Block Diagram interfacing with the world around
_— o
® They typically feature an
extensive number of 1/O ports.
® The 8051 features 4 8-bit I/O
ports.
* PO, P1, P2, P3
® These pins default to input;
you must specify if you wish
them to be set up as
outputs.
® This is done by simply
writing to the port.

ALE/P0.5

| 49°] /RD/P0.6

/WR/P0.7

ADO/DO/P3.0
AD1/D1/P3.1
AD2/D2/P3.2
AD3/D3/P3.3
AD4/D4/P3.4
ADS/D5/P3.5

C8051F021 VDD
C8051F023 DGND

ADG6/D6/P3.6/IE6
AD7/D7/P3.7T/IE7
A8m/AQ/P2.0
AImM/A1/P2.1
A10m/A2/P2.2
A11m/A3/P2.3

FERl]
A12m/A4IP2.4 9 il _+5U_ 5

AN N r

(20
27
27
(23]
26|
27
(28
29
30
[31]
[32]

AIN1.3/A11/P1.3
AIN1.2/A10/P1.2
AIN1.1/A9/P1.1
AIN1.0/A8/P1.0
A15m/ATIP2.7
A14m/AB/P2.6
A13m/A5/P2.5

~N Q@ w %
P s .
o o o o
O
w <= ™ o
e I 2 d
L £ £ <
N & . 3
P
zzzz
<L < < <

i

AR

BAREAFENEEA TR FRT YRR

TR T TR T P TR T ER e]

Vb

3 EX-F02X=Q100
4 WaveShare

L3a
» =3
L3>
L

M

#
W
(=9

RST

The AT89C51
micro controller o et
core

5 L]
General oL

= purpose
registers

The programming
model shows all e

the registers that addressabl
are available to the

EOH

AdH IE

AOH PORT 2 {P2) =

98H SCON

software Register [

developer. Notice
that the registers CBank2 son [

HCH FHO

are all assigned "

Register 8AH TLO

addresses apart [Bkt e

from the program e
0411 Register %31 DPH

3 " 2
counter. o] Bank0 5 |2

O1H

Internal SFRs
EAM

90H PORT 1 (P1) *

OO0

* Indicates the SFRs which are also bit addressable

Program
Counter

Internal
ROM

CONCEPTUALISING A

PROGRAM

® As engineers, we're often given
tasks and are expected to
practically realise them.
®* “Make a robot that sweeps the
floor!”
® As embedded systems engineers,
we need to be able to:
® Take a very high-level goal...
¢ ... and rationalise it with the
tools that we have available.
® If we are told: “Turn a light on and
off every one second!”...
® ... we must figure out how to
do that with the available tools.

HIGH LEVEL GOAL: Turn a
light on and off every one
second. (1 second on, 1

second off)

Find appropriate hardware:
We have access to the 8051... Does it
have the ability to fulfil this goal?

Explore the hardware’s architecture to
understand how to use the system’s
functions.

Select a means by which this hardware
may be programmed to fulfil the high
level goal... then do it!

PROGRAMMING LANGUAGE
HIERARCHIES

® Computer programming languages may be thought of as high-level or low-level.
® High-level: high levels of abstraction between language and hardware.
® C, Python, Javascript, LabView, Lua, C#, Java, Ada, Smalltalk, Swift, Forth...
® There are varying levels of abstraction: C has less than, say, Javascript
®* Low-level: Programming commands are very closely related to the hardware’s actual
operation.
® Assembly languages are considered low-level. often one line per instruction cycle.
Machine code is the lowest of all.

Faster to program,
easier to debug, more Highly abstracted: LabView, Max/MSP,
portable, and myriad JavasScript

other advantages

Moderately abstracted: C, C++

HIGH LEVEL
Fast execution, can be LOW LEVEL
deterministic, affords Low abstraction: Assembly language,
understanding of machine code

hardware

ASSEMBLY
LANGUAGES

® Every different computer architecture has unigue commands that allow it to execute
programs.
® At the very lowest level, these are electrical signals that correspond to LOGIC HIGH
and LOGIC LOW (0 or 1). Groups of these form instructions used by the computer.
® Machine code might look like this: 10010111 10011101 11101110 10011111
® This is very hard for most mortals to read, understand, debug, and expand
® These instructions and memory locations may be represented by mnemonics:
easier-to-read and easier-to-remember codes that represent the machine code.

NOP 0000 0000
ADD A, R3 0010 1011

BINARY, HEXADECIMAL,
DECIMAL

® We're used to counting in base-10 (decimal, 0d): this is because we have 10 fingers!
® Computers that use HIGH/LOW logic utilise a base-2 scheme: binary (Ob)
® |t can get very clunky and verbose to represent digital systems using binary: you end up
with lots and lots of O’s.
® To make things more compact, we often use hexadecimal (Ox or #nH).
® This is a counting system that goes from 0dO to 0d16 (0x0 to OxF)
® 0,1,234,5,6,7,89,AB,CD,EF
® 1 hexadecimal number takes the place of 4 binary numbers.
® These 4 binary numbers form half of a byte, often called a ‘nibble’
® 0b0000 0000 is the same as 0x0 0x0
® Hexadecimal is commonly used in low-level software development: machine codes and
addresses are easily represented this way.

MNEMONIC MACHINE CODE (0b) MACHINE CODE (0x)

DIV AB 1000 0100 O0x84

MOV A #data 0111 0100 Ox74

CISC VS, RISC

® |Instruction set: the collected instructions (in machine code) that are
executable by a CPU.

® CISC: Complex instruction set.
® Many detailed operations that allow for single instructions to have fine-
grained control over the computer.
¢ Common in many early computers...
® Good for low-level programming, as fewer commands are needed.
® Pentium, 8051, etc. are CISC
® RISC: Reduced instruction set
® As high-level languages became prevalent in the 1980’s and 1990’s, there
was less need for very specific processor instructions.
® Compilers could make use of a restricted (and fast!) instruction set to
efficiently realise high-level programs.
® ARM processors are the most prevalent RISC processors today.
® Assembly language programs for CISC systems are often relatively

human readable. RISC assembly language programs are significantly
less so.

8051 INSTRUCTIONS

® 8051 instructions are one byte, and are often organised in a table with the
high nibble on one axis and the low nibble on another:
https://www.win.tue.nl/~aeb/comp/8051/set8051.html
® In the Lab Exercise, you will find a PDF called at_c51ism.pdf (note that
the axes In this document are arranged opposite to those in the above
URL)
® This contains a detailed list of the 8051’s instructions. You are
strongly encouraged to explore this document.
® Further resources:
¢ KEIL 8051 instruction set reference:
nttp://www.keil.com/support/man/docs/is51/is51 instructions.htm
® |nstructions organised by function:
Nttps://www.engineersgarage.com/tutorials/8051-instruction-set

https://www.win.tue.nl/%7Eaeb/comp/8051/set8051.html
http://www.keil.com/support/man/docs/is51/is51_instructions.htm
https://www.engineersgarage.com/tutorials/8051-instruction-set

8051 SELCECTED
INSTRUCTIONS

® You aren’t expected to memorise the 8051’s instruction set.
® Should the test contain instruction set-related questions, you will be provided with
reference materials that you may consult during the test.

INSTRUCTION Example Number
MNEMONIC SYNTAX OpCode of bytes Notes
NOP NOP 0x00 1 Causes no operation
that cycle
MUL MUL AB OXA4 1 Multiply accumulator
by B
MOV MOV operandl, Ox74 13 Copies the val. of
operand?2 operandl to operand?2
: Increments the value
INC INC register 0x04 1-2 of the register by 1

	8051: BLOCK DIAGRAM
	CLOCK SOURCE
	MACHINE CYCLE
	8051 CPU
	8051 ACCUMULATOR
	8051 B REGISTER
	8051 PROGRAM COUNTER
	8051 DATA POINTER
	8051 INPUT/OUTPUT PORTS
	Slide Number 40
	Slide Number 41
	CONCEPTUALISING A PROGRAM
	PROGRAMMING LANGUAGE HIERARCHIES
	ASSEMBLY LANGUAGES
	BINARY, HEXADECIMAL, DECIMAL
	CISC VS. RISC
	8051 INSTRUCTIONS
	8051 SELCECTED INSTRUCTIONS

