
8051 FLAGS (INTRO)
• When the 8051’s processor enters certain states, it raises ‘flags’ to

indicate these states.
• These flags are stored in the Program Status Word register (PSW),

which uses six of the register’s eight bits.
• We’ll explore some examples of these flags.

PSW.7
CY

(Carry flag,
raised

when the
processor
needs to
carry in

addition)

PSW.6
AC

(Aux.
carry,
used

during
BCD
math)

PSW.5
F0

(User-
assignable

flag)

PSW.4
RS1

(Register
bank

selector,
don’t
worry

about for
now)

PSW.3
RS2

(Register
bank

selector,
don’t
worry

about for
now)

PWS.2
OV

(Overflow,
raised when

a signed
number

overflows
into the sign

bit)

PSW.1
-

(User
assignable)

PSW.0
P

(Parity: 0
if acc.
holds
even

number
of 1’s)

A SIMPLE ASSEMBLY
LANGUAGE PROGRAMHIGH LEVEL

GOAL: Turn
a light on and
off every one
ms. (1ms on,

1ms off)

Let’s connect the
LED to Port 1 and
then toggle Port 1
between 0 and 1

every 1 ms.

The biggest
challenge will

probably be figuring
out how to get a

good precise timer to
let the light stay
on/off for 1 ms

START:
MOV A,#0FFH ;;Move 0xFF(1) to accumulator
MOV P1,A ;;Move accumulator value to P1

 ;;TODO: delay for 1 ms!

MOV A,#00H ;;Move 0x0(0) to accumulator
MOV P1,A ;;Move accumulator value to P1

 ;;TODO: delay for 1 ms again

SJMP START ;;Jump back to ‘START’

 Note: Practical 8051 assembly language programs need a few other things
to get working (e.g., setting the start address, specifying when the program
has ended, etc.)

SUBROUTINES

//pseudocode, high-level example of port writing
main(){
Port1.write(HIGH);
delay1Ms(); //call function routine
Port1.write(LOW);
delay1Ms();

}

function delay1Ms(){
//code to make the CPU wait for 1 ms

}

• In high-level languages, we often use functions to compartmentalise
blocks of code that we might reuse.
• This allows us to avoid copy+paste of code.

• Somewhat similar to this is the assembly language concept of subroutines
• We can jump to particular blocks of code, execute them, and then jump

back to our ‘main’ program.
• Let’s try to do this with the 1 ms delay…

SUBROUTINES
START:
MOV A,#0FFH ;;Move 0xFF(1) to accumulator
MOV P1,A ;;Move accumulator value to P1

ACALL DELAY ;;Calls subroutine at ‘delay’

MOV A,#00H ;;Move 0x0(0) to accumulator
MOV P1,A ;;Move accumulator value to P1

ACALL DELAY ;;Delay for another 1 ms

SJMP START ;;Jump back to ‘START’

DELAY: ;;1 ms delay Subroutine
MOV R6,#250D ;;Place 0d250 into Register 6
MOV R7,#250D ;;Place 0d250 into Register 7
DEL1: DJNZ R6,DEL1 ;;DJNZ: Decrement R6 & jump if not 0
DEL2: DJNZ R7,DEL2 ;;DJNZ is 2-cycles, 2uS to run. 2X500us=1ms
RET ;;Return to ACALL

Challenge: Change this 1 ms delay to a 1 second delay. Hint: call the delay 4
times in a row (4ms), then repeat this 4x call 250 times. Also, think about how
you might realise this with clock frequencies other than 12 MHz

UNDERSTANDING HEX
FILES
• Once written and carefully checked over, the assembly language program

is assembled.
• We’ll use the KEIL IDE to do this.
• The result is a Hex file (.hex), with opcodes and accompanying data

represented as hex numbers.
• This hex file is in the Intel Hex format.

• More good info about this here:
https://www.edsim51.com/intelHex.html

• If you are going to do a lot of Hex file editing, a dedicated hex editor is
recommended: https://mh-nexus.de/en/hxd/

https://www.edsim51.com/intelHex.html
https://mh-nexus.de/en/hxd/

UNDERSTANDING HEX
FILES

:10000000 7438 1136 1150 740E 1136 1150 7401 1136 B6
:10001000 1150 7406 1136 1150 7448 1143 1150 7445 33
:10002000 1143 1150 744C 1143 1150 744C 1143 1150 31
:10003000 744F 1143 80FE F590 C2A0 C2A1 D2A2 1150 0C
:10004000 C2A2 22 F590 D2A0 C2A1 D2A2 1150 C2A2 22 75
:09005000 7B32 7CFF DCFE DBFA 22 AE
:00000001 FF

2-byte instructions (PC
increments 2 bytes past

these)

Checksum: all
bytes on the line

add up to this
value

Length of
line in
bytes

Address of first
opcode on the line

Normal lines end
with 00; end-of-file

is 01
Opcode + data

1-byte instructions (PC
increments 1 byte past

these)

LAB 1 NOTES
•Turn in: a commented Hex file at start of your Lab1.

•This needn’t have many additional notes. 1 or 2
lines up at the top explaining the changes that you
have made.
•A brief comment on each line explaining the line-

by-line changes.

MEMORY: RAM & STORAGE

CPU

PROGRAM
MEMORY

DATA
MEMORY

AD
DR

ES
S

BU
S

DA
TA

BU

S

AD
DR

ES
S

BU
S

DA
TA

BU

S

• Computers with a Harvard Architecture have
separate program and data memories.
• Microcontrollers have a ‘volatile’ data memory.

• RAM, loses state when the system resets.
• They have a non-volatile program memory.

• Retains state in power-off conditions.
• Historically, this was some form of ROM

(read only memory), originally programmable
only once.
• Modern microcontrollers (including the

C8051F020) use flash memory for program
memory.
• Flash memory may be reprogrammed a

relatively large number of times, but not
during program execution.

• Program memory is often embedded on
the microcontroller, but may also
consist of external memory modules.

THE 8051’S STORAGE

C8051F020 variant
of 8051:

256 bytes of RAM

C8051F020 variant of
8051:

64KB of Flash ProgMem

One of the major
variations that different
binary-compatible 8051

clones have is the
addition of more

program memory than
the original 4K ROM

ROM & FLASH: PROGRAM MEMORY
• The C8051F020 has 64 KB of internal flash.

• See page 24 of the data sheet (C8051F02X.pdf) for much more
information.

• While most programs are stored to this in-system-programmable flash…
• …the C8051F020 has 2KBytes of EEPROM

• The EEPROM may be edited programatically, and is sometimes
used to store variables that need to be retained after a reboot cycle.

INTERNAL FLASH,
64 K Bytes

0000h

FFFFh
If we wish to use
the Flash to hold

a bootloader
(discussed in the
next slide!), then
addresses F800h
and FFFFh are
reserved for the

bootloader INTERNAL FLASH,
64 K Bytes0000h

FFFFh

F800h

Reserved for
bootloader

FLASH-BASED BOOTLOADER
• Early microcontrollers (and some contemporary basic/specialised ones) were

programmed using custom programmers.
• These required the microcontroller (or the microcontroller’s data ROM) to

be removed from the circuit and programmed with high voltages.
• Contemporary microcontrollers can be programmed ‘in-system,’ allowing for

simple rapid development and iteration/revision of firmware.
• As flash memory requires some specific steps to be programmed, a

specific ‘serial bootloader’ may be used to allow the flash to be
programmed in-system via the microcontroller’s serial port.

VOLATILE MEMORY: RAM
• Originally, the 8051 had 128 Bytes of volatile RAM.

• The AT89C51AC3 has a whopping 256 Bytes alongside 2 KBytes of
additional RAM (called the “expanded RAM segment”, ERAM).

• This RAM is subdivided into a number of blocks, some general purpose
and some with very specific functions.

RAM:
256x8 bits

ERAM:
2048 bits

8051 DATA MEMORY MAP

LOWER 128 BYTES,
NOT TO SCALE

00h

7Fh

07h
REGISTER BANK 0

00h

0Fh
REGISTER BANK 1 (STACK)

08h

17h
REGISTER BANK 2

10h

1Fh
REGISTER BANK 3

18h

2Fh
16 BIT-ADDRESSABLE REG
20h

7Fh
80 Registers, only

accessible via
indirect addressing
(scratch-pad RAM)

30h

SPECIAL
FUNCTION

REGISTERS (SFR),
direct addressing
discussed below

See page 107 in
C8051F02xC3.pdf

for more information

80h

FFh

Upper 128 Bytes
Internal RAM

Indirect addressing

80h

FFh

8051 ADDRESSING MODES
• A key part of computer operation involves the accessing of memory; this may

be done on the 8051 using five main approaches.

• IMMEDIATE
ADDRESSING
MODE

• The data is
included in the
8051
instruction.

• MOV A,#48H
• The # shows

that the data is
‘immediate’

• In a sense, this
data is hard-
coded into the
instruction.
Fast but less
flexible.

• REGISTER
ADDRESSING
MODE

• The data
operand is in a
specified
register.

• Only some
registers may
be used: R0
through R7 of
each of the
8051’s banks.

• MOV A,R7
• Contents of

R7 are
copied to
ACC.

• DIRECT
ADDRESSING
MODE

• The address of
a location in
RAM is
specified, and
its contents
are operated
upon. Only
works with
internal RAM &
SFR’s

• MOV A,10H
• Contents of

address
are copied
to ACC.

• INDIRECT
ADDRESSING
MODE

• Slower: the
contents of a
location of the
address stored
in a register
are fetched.

• MOV A,@R7
• The @

indicates
an address

• Upper 128
bytes of RAM
are accessible
this way.

• INDEXED
ADDRESSING
MODE

• Used to step
through data
(as in lookup
tables).

• We won’t be
exploring this
in depth (and
you won’t be
tested on it!),
but see details
about the
MOVC
instruction in
C8051F02xC3.pdf

	8051 FLAGS (INTRO)
	Slide Number 54
	A SIMPLE ASSEMBLY LANGUAGE PROGRAM
	SUBROUTINES
	SUBROUTINES
	UNDERSTANDING HEX FILES
	UNDERSTANDING HEX FILES
	LAB 1 NOTES
	MEMORY: RAM & STORAGE
	THE 8051’S STORAGE
	ROM & FLASH: PROGRAM MEMORY
	FLASH-BASED BOOTLOADER
	VOLATILE MEMORY: RAM
	8051 DATA MEMORY MAP
	8051 ADDRESSING MODES

