
BIT-ADDRESSABLE REGISTERS

LOWER 128 BYTES,
NOT TO SCALE

00h

7Fh

07h
REGISTER BANK 0

00h

0Fh
REGISTER BANK 1 (STACK)

08h

17h
REGISTER BANK 2

10h

1Fh
REGISTER BANK 3

18h

2Fh
16 BIT-ADDRESSABLE REG
20h

7Fh
80 Registers, only

accessible via
indirect addressing
(scratch-pad RAM)

30h

• The 8051 has 16 bit-addressable registers.
• Bit-addressable: each bit within each register may

be independently manipulated.
• [_ _ _ _ _ _ _ _] < each of those bits may be

toggled, allowing fine-grained control.
• In a byte-addressable register, only the whole byte

can be manipulated.
• If you wish to manipulate a byte-addressable

register bit-by-bit, you typically must move it to
a bit addressable register, edit it, and then
move it back.

• R0-R7 in each of the register banks are byte-
addressable, as is the region from 0x30 to 0x7F
• Region from 0x20 to 0x2F is bit addressable.

• Some of the SFR’s (special function
registers) are also bit-addressable. This
allows us to edit settings (e.g., PSW) bit-by-
bit using the SETB instruction and the CLR
instruction.

Bit Addressing

• Bit Addressing with symbols is by dot notation

• The assembler performs translation and the machine code contains the
appropriate operand value.

• Generally, any mnemonic listed in the datasheet can be used as a
symbol in an assembly language program.

CLR 97H ;Clear bit 7 of port 1 in SFR (bit addressing)
CLR P1.7 ;Same as the above (symbol with dot notation)

Example
• Find the contents of the destination operand after execution of each of the

following instructions.

MOV R5, #10H ; R5 = 10H
INC R5 ; R5 = 11H
INC R5 ; R5 = 12H
MOV R0, #20H ; R0 = 20H
MOV A, #0FFH ; A = FFH
MOV 20H, A ; (20H) = FFH
MOV @ R0, #10H ; (20H) = 10H
INC A ; A = 00H
MOV 20H, #00H ; (20H) = 00H
INC 20H ; (20H) = 01H

Example
• Write a program to find the square of a number stored at the internal RAM

address 50H. Store the result at address 60H (LSByte) and 61H (MSByte). If
the number is AAH, what will be the result and status of the OV flag after
finding the square of that number?

MOV A, 50H ; copy the number at address 50H into A
MOV B, A ; copy the same number into B
MUL AB ; find the square by multiplication
MOV 60H, A ; copy the result (LSByte) into address 60H
MOV 61H, B ; copy the result (MSByte) into address 61H

• If the number is AA, then result will be 70E4H. Since result is greater than
FFH the overflow flag will be set, i.e. OV=1 after multiplication.

Today
• Memory Usage:
• Stack

• Most important registers today
are the Stack Pointer and the
Program Counter

On-Chip Data Memory Organisation
Most 8051 internal
registers are mapped
to on-chip RAM and,
therefore, have an
address:
• Stack Pointer
• Data Pointer
• PSW, TMOD, etc.
• ACC, B, R0-R7 etc.

Exceptions:
• Program Counter
• Instruction Register

Reason: little point in
addressing or
manipulating these
registers directly

STACKs
• Important point about stacks:

• Stack Pointer (SP) is a register memory-mapped to location 81H.

• Pushing to the stack increments the SP before writing data;
Popping from the stack reads data and then decrements the SP

• The 8051 stack is kept in internal RAM and is limited to addresses
accessible by indirect addressing (The first 128/256 bytes)

• It is possible to relocate the stack by changing the value of the Stack
Pointer.

• The System uses the stack to manage program flow, both user (CALL)
and interrupts

The system stack
• When calling a subroutine or serving an interrupt, it is necessary to

preserve the return address

• Also, often, we need to preserve the contents of other registers.

• Then, the stack is a special area of data memory for temporary
storage. It is a LIFO (Last In, First Out) Structure.

• A special Stack Pointer (SP) register is used to store the address of the
top of the stack.

• The reset value of the SP is 07H, which is just after the first register
bank

The system stack
• The maximum available memory for the 8051 stack is 128

bytes.

• This is not a lot, so we need to be careful that we do not run
out of memory and cause an overflow

• Therefore, we must avoid recursive-type programs

• PUSH and POP are special instructions associated with the
stack

The system stack
• Explain how the contents of the Accumulator and B registers

can stored and retrieved form the stack

The system stack
• With a call to a subroutine, for example, “ACALL.” The

operation will cause the PC to increase by 2. Then, it pushes
the 16-bit PC value onto the stack (low-order bytes first) and
increments the stack pointer twice.

• At the end of the subroutine, the RET instruction pops the
high byte and low byte address of the PC from the stack and
decrements the SP by 2. The execution of the instruction will
result in the program resuming from the location just after the
“CALL” instructions

• A similar procedure occurs with interrupt

• The user can also use the stack for temporary storage, which
is often a way to pass variables to and from subroutines.

STACK
• The 8051 features a stack. Common to many computers.

• Stack: memory region to which data may be ‘pushed’ and from
which data may be ‘popped’
• Push: data is added to the stack.
• Pop (AKA 'Pull’): the most recently added data is removed from

the stack.
• A stack is a “LIFO” structure: Last In, First Out

• Last data in becomes the first data removed
• The computer must keep track of the top of the stack: as the stack

grows, this memory address will also grow.
• This address is stored by the stack pointer.

• As the stack grows, the stack pointer holds the address of
the most recently added item.

• Stacks are used to temporarily store memory addresses while the
computer does something else.
• E.g., memory addresses before jumps to subroutines may be stored

on the stack.
• Many CISC computers have a hardware stack; most RISC machines

have stacks implemented in software.

LOWER 128 BYTES,
NOT TO SCALE

00h

7Fh

07h
REGISTER BANK 0

00h

0Fh
REGISTER BANK 1 (STACK)

08h

17h
REGISTER BANK 2

10h

1Fh
REGISTER BANK 3

18h

2Fh
16 BIT-ADDRESSABLE REG
20h

7Fh
80 Registers, only

accessible via
indirect addressing
(scratch-pad RAM)

30h

8051 STACK
• The 8051’s CPU features an 8-bit stack pointer

• By default, the stack pointer points to address 0x07
• The stack pointer increments by 1 (counting up).

• This is the address immediately below the stack.
• Register Bank 1, R0 (Address 0x08) is therefore the default start of the stack.

• Note that Register Bank 1 and the stack share the same space.
• If we need to use Bank 1, we can relocate the stack.
• MOV SP, #2FH ;Load 0x2F to stack pointer. ;
;Stack now starts at 0x30.

• Some instructions that use the stack:
• PUSH
• PUSH addr ; 2 cycles, increments stack pointer (SP) by 1 and then moves addr

to the address within SP.
• POP
• POP addr ; 2 cycles. First, addr is loaded with value pointed to by SP. SP is

then decremented by 1.
• ACALL (discussed in prev. slides): address of line following the ACALL is stored to

the stack (2 bytes).
• RET: return from subroutine. Two byte address stored in ACALL is popped from

the top of the stack (MSB then LSB) into PC.
• For more details on the registers and the stack, see https://what-when-how.com/8051-

microcontroller/8051-register-banks-and-stack/

https://what-when-how.com/8051-microcontroller/8051-register-banks-and-stack/
https://what-when-how.com/8051-microcontroller/8051-register-banks-and-stack/

	BIT-ADDRESSABLE REGISTERS
	Bit Addressing
	Example
	Example
	Today
	On-Chip Data Memory Organisation
	STACKs
	The system stack
	The system stack
	The system stack
	The system stack
	STACK
	8051 STACK

