
ECEN202

Mohammad Nekooei
mohammad.nekooei@vuw.ac.nz
School of Engineering and Computer Science
Victoria University of Wellington

mailto:mohammad.nekooei@vuw.ac.nz

TODAY

•Timers & Counters
• Interrupts
•Relatively big topic, so we might overflow

to next week on these items.

8051: BLOCK DIAGRAM

8051: BLOCK DIAGRAM

CLOCK SOURCE

Recap: CLOCK SOURCE
• 8051 programs are run sequentially, one instruction executing after the previous one.

• A clock source is needed to increment a program counter (discussed later).
• Other functions within the microcontroller (timers, communications, etc.) need to

operate synchronously as well.
• To make sure that all of these operate synchronously, the 8051 uses a master

oscillator.
• The 8051’s oscillator outputs a square wave. A relatively stable crystal (external)

determines this square wave's period.

OSCILLATOR HARDWARE
(internal, generates square

wave from crystal’s oscillation)

Crystal,
12 MHz

• Many modern processors can
execute one instruction per clock
cycle. (or more!)
• The 8051 requires 12 clock

cycles per “machine cycle”.
• Instructions on the 8051

require 1 or 2 machine
cycles

• Given a 12 MHz clock, this
means that we can execute 0.5-
1 million instructions per second
(MIPS).

Recap: MACHINE CYCLE
1 Clock Pulse

MACHINE CYCLE (12 Clock Pulses)

Given a 40 MHz Crystal, find the time required for one
machine cycle.

40 MHz / 12 = 3.33 MHz
1/3.33 MHz = 0.30 μs

The oscillator generates clock
pulses which are converted to
machine cycles (1/12 clock
pulses).
The CPU (etc.) is sequenced
by these machine cycles.

SPECIAL FUNCTION
REGISTERS
• Microcontrollers have various modes, settings, and

functionality that can be enabled.
• The ‘toggle switches’ that hold these states and

values are, in the case of the 8051, stored in the
Special Function Registers (SFR, 0x80 to 0xFF)

• The SFR also provides access to special-purpose
registers such as I/O ports.
• Some of the 8051’s SFR are bit addressable.

• Understanding a microcontroller’s special function
registers is greatly aided by reading the datasheet.
• Do this in conjunction with consulting pages such

as
http://www.keil.com/support/man/docs/c51/c51_le_
sfrs.htm

• SFR’s vary from device to device. Check the
specific device’s data sheet!

• We will use the special function registers extensively
when setting up timers, counters, and interrupts.

SPECIAL
FUNCTION

REGISTERS (SFR),
direct addressing
discussed below

See page 109 in
C8051F02xC3.pdf

for more information

80h

FFh

http://www.keil.com/support/man/docs/c51/c51_le_sfrs.htm
http://www.keil.com/support/man/docs/c51/c51_le_sfrs.htm

MICROCONTROLLER
TIMERS
• When working with microcontrollers, we often wish for events to

occur at a known rate.
• Communications clocks (e.g., SPI)…
• Waveform generation…
• Periodic execution of code…

• While we can generate precise delays using the main CPU (lots
of NOP’s, DJNZ, etc.), this is ‘blocking’ code, preventing the
CPU from easily doing other tasks while these timed events
occur.
• Such blocking code is generally considered sloppy and best

avoided.
• Instead, the microcontroller’s hardware timers should be

used, freeing up the CPU.

MICROCONTROLLER
TIMERS, CONTINUED
• The timer/counter is a separate component of the microcontroller’s

hardware.
• Timers are typically configured using configuration registers.

• These registers allow the timer’s rate, counting behaviour, and
overflow behaviour to be specified (amongst other things!)

• Timers work by counting up/down at a known rate.
• Given a known clock rate and a specific value to count to, very flexible

timing options are made available.
• Hardware timers on entry-level microcontrollers are usually either 8-

bit, 16-bit, or 32-bit.
• More bits == more precision timing options and lower frequencies.
• Very basic microcontrollers might have no hardware timers.

Modern advanced ones (e.g., ARM Cortex F7) might have 10+
timers with varying capabilities.
• Timers (such as those on the 8051) may often also be used as

counters, counting the numbers of events that occur.

TIMERS ON THE 8051
• The standard 8051 CPU has two timers (Timers 0 and 1).
• Enhanced binary-compatible ones (like the AT89C51AC3) might have more.
• The AT89C51AC3 features a third timer (Timer2); we’ll focus on Timer 0 and Timer 1\
• The C8051F020 features five timers in total

8051 TIMER
SPECIFICATIONS

Crystal (external)

Internal oscillator
circuitry (%12 or

%6)

8051 timers

• Timer 0 and Timer 1:
• 16 bits: can count from 0d0 to 0d65535
• Since the 8051 is an 8-bit microcontroller, the 16 bit

timers hold their values in two adjacent 8-bit
registers.
• TH0 and TL0 (Timer 0 High and Timer 0 Low)
• TH1 and TL1 (Timer 1 High and Timer 1 Low)

• To specify the timers’ modes and control the timers,
two special function registers are used.
• TMOD register: sets various timer modes.
• TCON register: Timer Control register, contains

settable flags that show the timers’ statuses.
• When the timer goes from the highest count (e.g.,

65535) to 0, it can call an interrupt which results in
special-purpose code being executed.
• Known as a ‘timer interrupt.’
• We’ll talk more about interrupts later.

1

0

2

4

3

…
5

65535
65534

65533

65532
65531

65530

O
verflow

! All 16 bits of tim
er w

ere full, so this step zeros it out

…

1

0

2

4

3

5

65535

65534

65533

65532
65531

65530

We can think of the
timers as ‘hardware
delay generators’

We can adjust the delay
by resetting it to start

from a value other than
0 after it has
overflowed…

Each pulse of the timer
takes 1 machine cycle

(FreqXTAL / 12) or
(FreqXTAL / 6) depending

on the 8051

Longer delays can
be generated by
counting a large

number of overflows.
E.g., if each overflow
takes 0.1 s, we can

count 864000 of
them to delay for

one day.

Note: 8051
timers have

different modes;
not all go from 0-

65535

TCON REGISTER
• The TCON (Timer Control) register lets us:

• Know when the timers have overflowed (TCON.7 and TCON.5)
• Start and stop the timers (TCON.6 and TCON.4)
• Specify external interrupt settings (TCON.3 - TCON.0)

• Interrupt settings will be discussed more in a future slide.

TCON.7
TF1

Timer 1
Overflow

Flag
1 when
overflow
occurs.
Must be

cleared in
software;

auto.
cleared
when

leaving ISR

TCON.6
TR1

Timer 1 run
bit

1: Start
timer

0: Stop
timer

(Software
controlled)

TCON.5
TF0

Timer 0
Overflow

Flag
1 when
overflow
occurs.
Must be

cleared in
software;

auto.
cleared
when

leaving ISR

TCON.4
TR0

Timer 0 run
bit

1: Start
timer

0: Stop
timer

(Software
controlled

TCON.3
IE1
Ext.

interrupt1
edge flag.
1: external
interrupt
occurred.

0: External
interrupt

processed.
(Hardware
controlled;
no need to
edit this)

TCON.2
IT1

Interrupt1
trigger type
select bit.

1: Interrupt
occurs on
the falling
edge of
INT1.

0: Interrupt
occurs on

INT1’s level
being LOW.

TCON.1
IE0
Ext.

interrupt0
edge flag.
1: external
interrupt
occurred.

0: External
interrupt

processed.
(Hardware
controlled;
no need to
edit this)

TCON.0
IT0

Interrupt0
trigger type
select bit.

1: Interrupt
occurs on
the falling
edge of
INT1.

0: Interrupt
occurs on

INT1’s level
being LOW.

TMOD REGISTER
• The TMOD (Timer Mode) special function register lets us:

• Set modes for Timer0 and Timer1
• Specify whether the timer always runs or only runs when some outside

condition it met.
• Specify whether the timer serves as a delay generator (timer) or as an event

counter.

TMOD.7
GATE

When 1,
timer only

counts
when TR1
bit is high

and there is
an external
interrupt at

INT0

TMOD.6
C/T

When 0,
Timer1

serves as
XTAL-

driven delay
generator

(timer);
When 1,
Timer1
counts

external
events

TMOD.5
M1

Timer 1
Mode bit 1
(see next
slides for

timer mode
info.)

TMOD.4
M0

Timer 1
Mode bit 0
(see next
slides for

timer mode
info.)

TMOD.3
GATE

When 1,
timer only

counts
when TR0
bit is high

and there is
an external
interrupt at

INT1

TMOD.2
C/T

When 0,
Timer0

serves as
XTAL-

driven delay
generator

(timer);
When 1,
Timer0
counts

external
events

TMOD.1
M1

Timer 0
Mode bit 1
(see next
slides for

timer mode
info.)

TMOD.0
M0

Timer 0 Mode
bit 0 (see next

slides for
timer mode

info.)

THx & TLx REGISTERS

7 6 5 4 3 2 1 0

TH0 Register

7 6 5 4 3 2 1 0

TL0 Register

16 Bits: High 8 bits in TH0, Low 8 bits in TL0

• Every time the timer iterates, the count of the timer register (really 2
‘joined’ registers) increases by 1.
• Once all bits are filled with 1’s (2^16), the next machine cycle will zero

everything out (overflow).
• This overflow will set a flag in TCON: TF0 or TF1

• The TH0 and TL0 registers may then be re-set with a value
between 0-2^16, and the count will begin again from this point.

TIMER OPERATING MODES
Bit values in TMOD

M1, M0 Mode name Notes

MODE 0 0, 0
13-bit timer mode: 8
bits of THx and 5 bits

of TLx

Don’t use this for new
projects! (Allows for
compatibility with old

systems)

MODE 1 0, 1

16-bit timer mode. TLx
counts 0-255; on

overflow, this adds 1
to THx

A very common mode
for generating delays
and counting events.

MODE 2 1, 0
8-bit timer mode. TLx
auto-reloads with THx

value.

In non auto-reload modes,
software must reload value
after overflow; this does it

automatically.

MODE 3 1, 1
“Split timer” mode:

THx is one 8-bit timer,
and TLx is another.

When Timer0 is in split timer
mode, TH0 becomes Timer1 and

TL0 becomes Timer2.
Meanwhile, the ‘real’ Timer1 just
counts away. Useful if you need

two ‘smart’ delays and one
‘dumb’ one.

TIMER2 AS A PROGRAMMABLE
CLOCK SOURCE • Many binary-compatible

8051 clone have additional
timers. The AT89C51AC3’s
Timer2 behaves similarly to
the other timers.
• Timer2 is a 16 bit timer

configured by the
T2MOD register.
• The T2CON register

is equivalent to the
TCON register.

• Timer 2 can be configured
to work as a 50% duty cycle
square wave clock pulse
generator.
• See page 238 in

C8051F02x.pdf for more
information.

• Timer 2 can also be set as
an auto-reload 16 bit timer
(meaning that it auto-
restarts after overflow, no
software intervention
needed).

MONITORING TIMER
OVERFLOW
• Timers iterate at one tick per machine cycle.

• When the timer overflows, we know that a certain amount of time has elapsed since
the timer was started.
• In order to know exactly when the timer has overflowed, we can do two things:

• “Polling” approach: in the main program, regularly and rapidly check whether
the TFx flag has gone from 0 to 1.
• Advantages: Easy to program.
• Disadvantages: The eats up CPU resources, requiring us to constantly

inspect a memory location instead of using those CPU cycle for other
things.
• ALSO: if we’re doing something else (e.g., displaying text on an LCD),

we might miss the exact moment of the overflow.
• “Interrupt-driven” approach: the 8051’s program counter is vectored to the

start address of interrupt service routine (ISR) when an overflow occurs.
• We’ll implement some examples of this in a future slide.
• Advantage: CPU can do other things while the timer counts up, only

needing to service the timer when an overflow occurs.
• Much, much more efficient! Less deterministic.

EXAMPLE: SQUARE WAVE
GENERATOR, POLLING

Example based upon:
https://what-when-how.com/8051-microcontroller/programming-8051-timers/

;Generate a 50% duty cycle square wave on a 12-cycle 8051.
;We’ll count from 2^15 to 2^16, a total of 32768 values.
;XTAL = 12 MHz, machine cycle = 1 MHz, delay time = 0.033 s
;Output this square wave to P1.0
;Set up our timer: we’ll use Timer 0, Mode 1 (16 bit timer)
MOV TMOD,#01 ;TMOD reg: 0 0 0 0 0 0 0 1

;Now we load 0d32768 (0x8000) into the TL0 and TH0 registers
TIMR:
MOV TL0,#00H ;00000000 (Load up the timer registers with values to count)
MOV TH0,#80H ;10000000
CPL P1.0 ;Compliment P1.0 (flips bits - inverts it; if 0, then 1)
ACALL START
SJMP TIMR

START:
SETB TR0 ;Start timer0

POLLER: JNB TF0, POLLER ;Jump if bit not set. Waits for overflow
CLR TR0 ;Stop timer 0
CLR TF0 ;Clear the overflow flag
RET ;Jump back to ACALL

https://what-when-how.com/8051-microcontroller/programming-8051-timers/

	ECEN202
	TODAY
	Slide Number 89
	8051: BLOCK DIAGRAM
	Recap: CLOCK SOURCE
	Recap: MACHINE CYCLE
	SPECIAL FUNCTION REGISTERS
	MICROCONTROLLER TIMERS
	MICROCONTROLLER TIMERS, CONTINUED
	TIMERS ON THE 8051
	8051 TIMER SPECIFICATIONS
	Slide Number 98
	TCON REGISTER
	TMOD REGISTER
	THx & TLx REGISTERS
	TIMER OPERATING MODES
	TIMER2 AS A PROGRAMMABLE CLOCK SOURCE
	MONITORING TIMER OVERFLOW
	EXAMPLE: SQUARE WAVE GENERATOR, POLLING

