
ECEN202

Mohammad Nekooei
mohammad.nekooei@vuw.ac.nz
School of Engineering and Computer Science
Victoria University of Wellington

mailto:mohammad.nekooei@vuw.ac.nz

TODAY

•Timers as counters
• Interrupts

TIMERS AS COUNTERS
• Timers work by counting events and iterating each time an event arrives.
• In the traditional timer role (as a ‘delay generator’), these events come

from the microcontroller’s crystal oscillator (XTAL).
• We can also configure 8051 timers to count up each time another external

event arrives.
• This way, we can count things like button presses, times that sensors

have exceeded thresholds, waveform edges, etc.

When T0 is in
Counter mode,

events arriving at
T0 pin iterate the

counter.
To enable the
counters, set
TMOD.6 or

TMOD.2 to 1.

COUNTER EXAMPLE CODE

PORT 2: LED’s
connected to
each of the
port’s pins
(additional

support circuitry
not shown)

Events arrive at T0 pin (shares a pin
with P3.4; this pin must be set as an

input by writing it HIGH)

Goal: set up Timer 0
as a counter; count 0-

255 (Mode 2) and
display this count on

Port 2.

TMOD REGISTER
TMOD.7
GATE

When 1,
timer only

counts
when TR1
bit is high

and there is
an external
interrupt at

INT0

TMOD.6
C/T

When 0,
Timer1

serves as
XTAL-

driven delay
generator

(timer);
When 1,
Timer1
counts

external
events

TMOD.5
M1

Timer 1
Mode bit 1
(see next
slides for

timer mode
info.)

TMOD.4
M0

Timer 1
Mode bit 0
(see next
slides for

timer mode
info.)

TMOD.3
GATE

When 1,
timer only

counts
when TR0
bit is high

and there is
an external
interrupt at

INT1

TMOD.2
C/T

When 0,
Timer0

serves as
XTAL-

driven delay
generator

(timer);
When 1,
Timer0
counts

external
events

TMOD.1
M1

Timer 0
Mode bit 1
(see next
slides for

timer mode
info.)

TMOD.0
M0

Timer 0 Mode
bit 0 (see next

slides for
timer mode

info.)

7 6 5 4 3 2 1 0

TH0 Register

7 6 5 4 3 2 1 0

TL0 Register

16 Bits: High 8 bits in TH0, Low 8 bits in TL0

COUNTER EXAMPLE CODE
MOV TMOD,#00000110B;Set timer 0 as a counter in mode2.

 MOV TH0,#0 ;Clear TH0
 SETB P3.4 ;Set T0 pin (shared with P3.4) to input
START:

SETB TR0 ;Start timer 0

LOOP:
 MOV A,TL0 ;Grab how many events TL0 holds
 MOV P2,A ;Output the binary count of event numbers
 JNB TF0,LOOP ;Keep polling the TL0 port as long TF0=0
 CLR TR0 ;Stop the counter
 CLR TF0 ;Reset the event arrived flag
 SJMP START ;Restart the timer, repeat

Example based upon:
https://what-when-how.com/8051-microcontroller/counter-programming/

https://what-when-how.com/8051-microcontroller/counter-programming/

WATCHDOG TIMER
• In many critical applications, it can be beneficial to have an “emergency

reset” switch.
• This will allow us to reset our microcontroller even if the program hangs

up on some routine.
• Useful to let us automatically recover from unexpected ‘crashes.’

• Microcontrollers’ watchdog timers (WDT’s) will automatically reset the
system (moving PC to 0, etc.) if they are allowed to overflow.
• In a normally operating system, WDTs are reset in software every so

often. If this reset does not occur, then we know that the system is
hanging and is in need of a reset.

• The 8051 features a watchdog timer.
• The C8051F02x has a 21 bit timer of which 7 bits can be set, allowing

custom time-out intervals (of 16 ms to 2 s).
• We won’t study this in detail, but keep watchdog timers in mind

when building systems that need to automatically recover from
unexpected errors.

• For more information on setting up and using the 8051’s watchdog
timer, see page 129 of C8051F02x.pdf.pdf.

BLOCKING CODE
Setup code

Looping
code

What if ‘PinN’ changes during
one of the blocks of
instructions?
And what if it’s very important
that we not miss ‘PinN’
changing state?
We might solve this by
configuring an interrupt to call
some code and leave the pre-
defined instructions whenever
the pin changes.

what if ‘PinN’
changes

state here?

Instructions

Instructions

INTERRUPT-DRIVEN CODE

‘PinN’ changes state here

• Interrupt flag raised
• Complete current

instruction
• Save program counter

address of next inst.
• Load interrupt vector into

program counter
• Service interrupt (ISR =

interrupt service routine),
AKA ‘handler’

• Return to loop (restore
program counter), RETI

handling an interrupt

Setup Code

Looping
code

Introduction to Interrupts
♦ An interrupt is the occurrence of a condition that causes a temporary

suspension of a program while the condition is serviced by another
(sub) program

♦ Interrupts are important because they allow a system to respond
asynchronously to an event and deal with the event while in the middle
of performing another task

♦ An interrupt-driven system gives the illusion of doing many things
simultaneously

♦ The (sub) program that deals with an interrupt is called an interrupt
service routine (ISR) or interrupt handler

Introduction
♦ The ISR executes in response to the interrupt and generally performs

an input or output operation to a device

♦ When an interrupt occurs, the main program temporarily suspends
execution and branches to the ISR

♦ The ISR executes, performs the desired operation, and terminates with
a “return from interrupt” (RETI) instruction
The RETI instruction is different from the normal “RET” instruction

Interrupt Organization
♦ The 8051 supports many interrupt sources, including:
external interrupts
 timer interrupts
serial port interrupts
Each interrupt source has one or more associated interrupt-pending flag(s) located

in an SFR
♦ When a peripheral or external source meets a valid interrupt condition, the

associated interrupt-pending flag is set to 1
These interrupt flags are “level sensitive” in that if the flag is not cleared in the ISR by

either hardware or software, the interrupt will trigger again, even if the event that
originally caused the interrupt did not occur again

♦ All interrupts are disabled after a system reset and enabled individually by
software

INTERRUPTS
• Interrupts allow special routines to be run when the microcontroller enters

certain states.
• We’ll discuss the 8051-specific states below, but interrupts are often

associated with microcontrollers’ hardware peripherals:
• When some hardware peripheral (timer, serial port, external I/O port,

etc.) changes state, main program flow can be set to be interrupted to
handle this change in a timely manner.

• Interrupts disrupt the running of normal code.
• It is important to follow best practices with interrupts to keep from

disrupting normally-running code:
• Keep interrupt service routines short.
• Try to avoid calling subroutines within your interrupt service routine.
• Ask what might happen if an interrupt is itself interrupted…
• Interrupts are handled in order of a defined priority.
• Consider interrupt priority: which interrupt is most important?

• If particularly time-sensitive code is used (e.g., bit-banging emulation of
a serial port), consider disabling interrupts during this routine.
• Re-enable after this routine is finished.

INTERRUPTS
♦ The ISR executes in response to the interrupt and generally performs an input or

output operation to a device

♦ When an interrupt occurs, the main program temporarily suspends execution and
branches to the ISR

♦ The ISR executes, performs the desired operation, and terminates with a “return
from interrupt” (RETI) instruction
 The RETI instruction is different from the normal “RET” instruction

INTERRUPTS
Reset

Execute
Main Code

Continue to
Execute

Main Code

Push PC
on Stack

Push
Registers
on Stack

Execute
ISR Code

Pop
Registers
from Stack

Pop PC
from Stack

Timer Overflow
Interrupt Occurs

At This Time

8051 INTERRUPTS
• The original 8051 has four interrupt types.
• RESET: When reset , PC is loaded with ROM address 0x0000
• Unlike other interrupts, prior addresses aren’t loaded to stack, etc.

• TIMER INTERRUPTS: one interrupt for Timer 0 and one for Timer 1.
• Timer 0 interrupt: PC is vectored to 0x000B
• Timer 1 interrupt: PC is vectored to 0x001B

• EXTERNAL INTERRUPTS: Interrupts that are called in response to
external signals.
• External interrupt 0 - INT0 (AKA EXT1): PC vectored to ROM 0x0003.
• External interrupt 1 - INT1 (AKA EXT2): PC vectored to ROM 0x0013.

• SERIAL INTERRUPT: Interrupt that is called in response to serial events.
• Serial interrupt: PC is vectored to ROM 0x0023.

• The C8051F020x has additional interrupts; we’ll look at these later.
• If the ISR is short, it can fit in the 8 bytes allocated to the interrupts.
• If the ISR is longer, the vector address holds an LJMP instruction that

points to another memory location, allowing for a longer ISR.

INTERRUPT VECTOR TABLE
INTERRUPT ROM ADDRESS (for

start of ISR) INTERRUPT PIN NOTES

RESET 0x0000 9
Note only 3 bytes of ROM

between this and INT0.
See example, next slide.

INT0 0x0003 P3.2 Interrupt flag auto-
clears

Timer0 0x000B N/A Interrupt flag auto-
clears

INT1 0x0013 P3.3 Interrupt flag auto-
clears

Timer1 0x001B N/A Interrupt flag auto-
clears

Serial Port 0x0023 N/A Software must clear
this interrupt flag.

INTERRUPT VECTOR TABLE

INTERRUPT VECTOR TABLE

RESET
• Note the low ROM addresses for the interrupt vector table addresses.
• Also, note how Reset has only three bytes of ROM (0x0000-0x0002).
• If we’re not careful, our PC will just step through the other ISR’s and

execute them. Instead, we must quickly LJMP past these ISR
addresses into an un-used memory space.

• We can use the ORG directive to tell our assembler to assemble the
code to make sure that we bypass this vector table.

ORG 0 ;This is our RESET address.
LJMP BODY ;We jump past the interrupt vector table addresses

ORG 30H ;We use org directive to associate the following
 ; instructions with addresses past 30H
BODY:
;Our non-ISR code goes here, since we set ORG past our ISR
;vector table addresses
END

THE IE (IEN0) REGISTER
• The special function register that allows for interrupt control is the IE

register.
• IE = interrupt enable.

• Allows for bit-by-bit control of each individual interrupt as well as all
interrupts at once.

• Original 8051’s have a single IE register; the C8051F020x has two.
• We’ll focus on the first one, called IEN0 on the C8051F020x.

IEN0.7
EA

Enable all
interrupts

1: interrupts
may be
enabled

individually
0: All

interrupts
are disabled.

IEN0.6
EC

PCA
interrupt
enable
When 1,

PCA
interrupt is
enabled. A

C8051F020
specific

interrupt,
discussed

later

IEN0.5
ET2

Timer 2
Overflow
Interrupt
Enable

When 1,
Timer 2

interrupt is
enabled.

IEN0.4
ES

Serial Port
interrupt

enable bit.
When 1,

serial port
interrupt is
enabled.

IEN0.3
ET1

Timer 1
Overflow
Interrupt
Enable

When 1,
Timer 1

interrupt is
enabled.

IEN0.2
EX1

External
interrupt 1
enable bit.
When 1,
External

Interrupt 1 is
enabled.

IEN0.1
ET0

Timer 0
Overflow
Interrupt
Enable

When 1,
Timer 0

interrupt is
enabled.

IEN0.0
EX0

External
interrupt 0
enable bit.
When 1,
External

Interrupt 0 is
enabled.

Interrupt enable registers

INTERRUPT PRIORITY
• If we’re implementing an interrupt-rich application, we need to consider what

happens if multiple interrupts arrive at the same time (interrupt during ISR).
• Older 8051’s had less flexible interrupt priority control.
• For more on original 8051 priority, see https://what-when-how.com/8051-

microcontroller/interrupt-priority-in-the-805152/
• The C8051F020x has a much more modern interrupt priority configuration

capability, which we’ll focus upon.
• Upon boot-up, the interrupts are given default priority hierarchy.
• We can change this priority hierarchy by manipulating two SFR’s.
• IPL0 and IPH0 registers.

• By default, the interrupt priority is:
1. External interrupt 0 (INT0)
2. Timer 0 (TF0)
3. External interrupt 1 (INT1)
4. Timer 1 (TF1)
5. Programmable counter array (discussed later) (CF)
6. Serial UART (RI or TI)
7. Timer 2 (TF2)
8. ADC (discussed later) (ADCI)
9. SPI (discussed later)

D
EC

R
EA

SIN
G

 PR
IO

R
ITY

https://what-when-how.com/8051-microcontroller/interrupt-priority-in-the-805152/
https://what-when-how.com/8051-microcontroller/interrupt-priority-in-the-805152/

SETTING INTERRUPT
PRIORITY
• Each interrupt has two bits that can set its priority.
• These bits are in the IPH0 and IPL0 registers.
• These two bits give four possible levels of interrupt priority.

• If two interrupts are configured with the same priority level, then they are handled
in order of their ranking in the default priority level scheme (prev. slide).

IPH.x IPL.x Priority level (0: lowest, 3:
highest)

0 0 0

0 1 1

1 0 2

1 1 3

THE IPL AND IPH REGISTERS

7. (Reserved)

6. PPCH (PCA Int)

5. PT2H (Timer2)

4. PSH (Serial port)

3. PT1H (Timer 1)

2. PX1H (INT1)

1. PT0H (Timer 0)

0. PX0H (INT0)

IPH0 IPL0

7. (Reserved)

6. PPC (PCA Int)

5. PT2 (Timer2)

4. PS (Serial port)

3. PT1 (Timer 1)

2. PX1 (INT1)

1. PT0 (Timer 0)

0. PX0 (INT0)

IPH.x IPL.x
Priority level
(0: lowest, 3:

highest)

0 0 0

0 1 1

1 0 2

1 1 3

Interrupt control structure

Y

TIMER INTERRUPTS
• Goal: replicate the “EXAMPLE SQUARE WAVE” code from a previous slide,

replacing polling approach with an interrupt-driven approach.
• Advantages: we can free up the CPU from having to monitor the TFx flag.

• For this example, we’ll keep the ISR short so it will fit within the 8 Bytes of ROM
allocated by the Interrupt Vector Table.

Upon reset, jump past interrupt vector
table to ROM address 0030H

At Timer 0 ISR vector table location:
Toggle P0.1 (CPL instruction)

At 0030H: Configure Timer 0 interrupt

Do other tasks (reading a pin, etc.)
until interrupted Note: this branch is

handled automatically by
interrupt system so no

need to poll.

Timer0 interrupt?
N

TIMER INTERRUPT
EXAMPLE
;We’ll be using the interrupt address space, so we need to make
;sure that our main program bypasses this.
ORG 0000H
LJMP MAIN ;Jump past the interrupt vector table.

;—- Main body of program. Start by configuring Timer 0
ORG 0030H ;Directs assembler past interrupt vector table
MAIN: MOV TMOD, #00000001B ;Timer 0, mode 1
MOV TL0,#00 ;Initially load timer values
MOV TLH,#80H
MOV IEN0, #10000010B ;Enable timer 0 interrupt
SETB TR0 ;Start the timer
IDLE: SJMP IDLE ;Loop here until interrupt. No polling of int flag!
END

;—-ISR for Timer 0. Will generate a square wave at Port 0.1
ORG 000BH ;Assembler will place code at Timer0 vector adr.
CPL P0.1 ;Toggle Port 0 pin 1
MOV TL0,#00 ;Must reload timer values manually in this mode
MOV TLH,#80H
RETI ;Return from int.; pops PC and resets interrupt logic

EXTERNAL INTERRUPTS

High-to-
low edge

Low level
triggered

• In addition to interrupting normal program
flow in response to a timer, external pin
activations can be set to interrupt program
flow.

• On the 8051, interrupts can be set to be
triggered in response to two different types of
pin states/state changes:
• Low level triggered: when the external

interrupt pin is LOW, the interrupt is
triggered.
• The interrupt will be re-triggered if the

pin remains low after the ISR!
• Edge triggered interrupt: interrupt is

triggered on falling edge of signal at
external interrupt pin.
• Falling edge: when pin goes from

HIGH to LOW.
• Low-level or falling edge mode:

configured in TCON register.
• Need to trigger on rising edge? Use

an inverter chip (e.g., 7404)

EXTERNAL INTERRUPT
CONFIGURATION
• Low 4 bits of TCON register: configure/examine external interrupts.
• TCON.3 (IE1) and TCON.1 (IE0): ‘external interrupt occurred’ flags.
• TCON.2 (IT1) and TCON.0 (IT0): set interrupt trigger type.

TCON.7
TF1

Timer 1
Overflow

Flag
1 when
overflow
occurs.
Must be

cleared in
software;

auto.
cleared
when

leaving ISR

TCON.6
TR1

Timer 1 run
bit

1: Start
timer

0: Stop
timer

(Software
controlled)

TCON.5
TF0

Timer 0
Overflow

Flag
1 when
overflow
occurs.
Must be

cleared in
software;

auto.
cleared
when

leaving ISR

TCON.4
TR0

Timer 0 run
bit

1: Start
timer

0: Stop
timer

(Software
controlled

TCON.3
IE1
Ext.

interrupt1
edge flag.
1: external
interrupt
occurred.

0: External
interrupt

processed.
(Hardware
controlled;
no need to
edit this)

TCON.2
IT1

Interrupt1
trigger type
select bit.

1: Interrupt
occurs on the
falling edge of

INT1.
0: Interrupt
occurs on

INT1’s level
being LOW.

TCON.1
IE0

Ext.
interrupt0
edge flag.
1: external
interrupt
occurred.

0: External
interrupt

processed.
(Hardware
controlled;
no need to
edit this)

TCON.0
IT0

Interrupt0
trigger type
select bit.

1: Interrupt
occurs on the
falling edge of

INT1.
0: Interrupt
occurs on

INT1’s level
being LOW.

EXTERNAL INTERRUPT
EXAMPLE
• Goal: Toggle an LED connected to Port 1, pin 3.
• This LED will be toggled when an external interrupt (INT1) arrives.

ORG 0000H
LJMP MAIN ;Jump past the interrupt vector table.

;— ISR: Interrupt 1, toggles LED when new interrupt arrives.
ORG 0013H ;Location in vector table of INT1
CPL P1.3 ;Toggle Port 1 pin 3
RETI ;Reset PC and clear interrupt flags

;Set up interrupts at ROM location past vector table
ORG 0030H
MAIN: SETB TCON.2 ;Interrupt is falling edge triggered
MOV IEN0 #10000100B ;Enable interrupts, INT1

IDLE: SJMP IDLE ;Other code could go here. Idle main CPU for now.
END

	Slide Number 106
	TODAY
	TIMERS AS COUNTERS
	COUNTER EXAMPLE CODE
	TMOD REGISTER
	COUNTER EXAMPLE CODE
	WATCHDOG TIMER
	BLOCKING CODE
	INTERRUPT-DRIVEN CODE
	Introduction to Interrupts
	Introduction
	Interrupt Organization
	INTERRUPTS
	INTERRUPTS
	INTERRUPTS
	8051 INTERRUPTS
	Slide Number 122
	INTERRUPT VECTOR TABLE
	INTERRUPT VECTOR TABLE
	INTERRUPT VECTOR TABLE
	RESET
	THE IE (IEN0) REGISTER
	Interrupt enable registers
	INTERRUPT PRIORITY
	SETTING INTERRUPT PRIORITY
	THE IPL AND IPH REGISTERS
	Interrupt control structure
	TIMER INTERRUPTS
	TIMER INTERRUPT EXAMPLE
	EXTERNAL INTERRUPTS
	EXTERNAL INTERRUPT CONFIGURATION
	EXTERNAL INTERRUPT EXAMPLE

