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Week 10 Lecture 1  

• Alternate Logic Representation

• Combinatorial Logic



Alternate Logic-Gate Representations

• To convert a standard symbol to an alternate:

– Invert each input and output (add an inversion bubble 

where there are none on the standard symbol, and 

remove bubbles where they exist on the standard 

symbol.

– Change a standard OR gate to an AND gate, or an AND 

gate to an OR gate.



Standard and alternate symbols for various logic gates and inverter.

NOT 



Alternate Logic-Gate Representations

• Active high – an input or output has no inversion 

bubble.

• Active low – an input or output has an inversion 

bubble.



Alternate Logic-Gate Representations

• Active high – an input or output has no inversion 

bubble.

• Active low – an input or output has an inversion 

bubble.

• An AND gate will produce an active output when 

all inputs are in their active states.

• An OR gate will produce an active output when 

any input is in an active state.



Which Gate Representation to Use?

• Using alternate and standard logic gate symbols 

together can make circuit operation clearer.

• When possible choose gate symbols so that 

bubble outputs are connected to bubble input and 

non-bubble outputs are connected to non-bubble 

inputs.



IEEE/ANSI standard Logic Symbols

• Rectangular symbols represent logic gates and 

circuits.

• Dependency notation inside symbols show how 

output depends on inputs.

• A small triangle replaces the inversion bubble.



IEEE/ANSI standard Logic Symbols

• Compare the 

IEEE/ANSI symbols 

to traditional 

symbols.

• These symbols are 

not widely accepted 

but may appear in 

some schematics.

Lecture Notes XMUT students’

textbook
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Combinatorial Logic 

• Basic logic gate functions will be combined.

• At any time the output depends only on the 

combination of logic levels at the inputs to the 

circuit.

• Simplification of logic circuits will be done using 

Boolean algebra and a mapping technique.
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Simplifying logic circuits 

• Logic circuit simplification and design requires the 

logic expression to be in a sum-of-products (SOP) 

form.

• This expression will appear as two or more AND 

terms ORed together.

DDCCBAAB

CBAABC

+++

+Examples: 1)

                  2)
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Two methods to simplify logic circuits:

 (1) Boolean algebra 

 (2) Karnaugh mapping

Simplifying Logic Circuits
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Algebraic Simplification

Steps:

1. Place the expression in Sum-of-Products (SOP) 
form by applying DeMorgan’s theorems and 
multiplying terms.

2. Check the SOP form for common factors and 
perform factoring where possible.

 Note that this process may involve some trial and 
error to obtain the simplest result.  Simplification 
gives a more efficient implementation.

y.x)yx( =+ yx)y.x( +=
De Morgan’s 

Theorem
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Simplify the following logic circuit.

Circuit output 
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Simplification:
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Simplification:
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Steps:

1. Place the expression in Sum-of-Products (SOP) 
form by applying De Morgan’s theorems and 
multiplying terms.

y.x)yx( =+ yx)y.x( +=
De Morgan’s 

Theorems
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Simplification:
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Simplification:
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Simplification:
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Simplification:
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Simplification:
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Designing Combinatorial Logic Circuits

If we know the design conditions (truth table) we want to 

design the logic circuit and then implement the circuit with 

AND, OR and NOT gates.
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Designing Combinational Logic Circuits

Design Procedure:

1. Set up truth table

2. Write AND term for each case where the output is HI

3. Write the SOP expression for the output

4. Simplify the expression

5. Implement the circuit
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Designing Combinational Logic Circuits

• Design a logic circuit that has three inputs, A, 

B, and C, whose output will be HIGH only 

when a majority of the inputs are HIGH.
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Step 1: Set up truth table

3 Inputs: A, B and C
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Step 1: Set up truth table

3 Inputs: A, B and C
Output will be HIGH only 

when a majority of inputs are 

HIGH
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Step 1: Set up truth table

Step 2: Write AND term for each case where the output is HI
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Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC
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ABACBCx
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Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC

Step 4: Simplify the expression
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ABACBCx
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Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC

Step 4: Simplify the expression (trick: copy product terms!)
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ABACBCx

)CC(AB)BB(AC)AA(BCx

ABCCABABCCBAABCBCAx

ABCCABCBABCAx

++=

+++++=

+++++=

+++=

Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC

Step 4: Simplify the expression
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Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC

Step 4: Simplify the expression
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ABACBCx
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Step 3: Write the SOP expression for the output

   x = ABC + ABC + ABC + ABC

Step 4: Simplify the expression

Step 5: Implement Circuit

You have 5 minutes to implement (ie draw) the circuit for 

  x = BC + AC + AB
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Step 5: Implement Circuit

 x = BC + AC + AB
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Exercises

1. Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

b)

c)

d)

  

2. Draw the logic circuits for the Boolean expression 

shown above and the simplified circuit derived from 

your solutions.
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Week 10 Lecture 1  

• Alternate Logic Representation

• Combinatorial Logic
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Week 10 Lecture 2    

• Combinatorial Logic (cont’d)

• Boolean Laws and K-maps
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

b)

c)

d)

  

Draw the logic circuits for the Boolean expression

shown above and the simplified circuit derived from

your solutions.



Boolean Algebra - Basic Rules

1.  A + 0 = A

2.  A + 1 = 1

3.  A  0 = 0

4.  A  1 = A

5.  A + A = A

6.  A + A = 1



Boolean Algebra - Basic Rules

1.  A + 0 = A

2.  A + 1 = 1

3.  A  0 = 0

4.  A  1 = A

5.  A + A = A

6.  A + A = 1

7.  A  A = A

 8.  A  A = 0

 9.  A  = A

10. A + AB = A

11. A + AB = A + B

12. (A + B)(A + C) = A + BC
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

 = AB + AB + AC + BB + BC  Distributive law 
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

 = AB + AB + AC + BB + BC  Distributive law 

 = AB + AC+ BB + BC   Rule 5 (AB + AB = AB)
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

 = AB + AB + AC + BB + BC  Distributive law 

 = AB + AC+ BB + BC   Rule 5 (AB + AB = AB)

 = AB + AC + B  + BC   Rule 7 (BB = B)
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

 = AB + AB + AC + BB + BC     Distributive law 

 = AB + AC+ BB + BC      Rule 5 (AB + AB = AB)

 = AB + AC + B  + BC      Rule 7 (BB = B)

 = AB + AC + B       Rule 10 (B + BC = B)
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

 = AB + AB + AC + BB + BC     Distributive law 

 = AB + AC+ BB + BC      Rule 5 (AB + AB = AB)

 = AB + AC + B  + BC      Rule 7 (BB = B)

 = AB + AC + B       Rule 10 (B + BC = B)

 = AB + B + AC       Rule 10 (B + BC = B)

 = B + AC
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Exercises

Use Boolean Algebra to simplify the following:

     Original expression      Simplified expression

a)  AB + A(B + C) + B(B + C)  =  B + AC

  

Draw the logic circuits for the Boolean expression

shown above and the simplified circuit derived from

your solutions.
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Exercises

a)  AB + A(B + C) + B(B + C)

 Draw the logic circuits for the Boolean expression

shown above and the simplified circuit  B + AC
1st term

2nd term

3rd term
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Exercises

a)  AB + A(B + C) + B(B + C)

 Draw the logic circuits for the Boolean expression

shown above and the simplified circuit  B + AC
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

b)

c)

d)

  

Draw the logic circuits for the Boolean expression

shown above and the simplified circuit derived from

your solutions.
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Exercises

Use Boolean Algebra to simplify the following:

a)  AB + A(B + C) + B(B + C)

b)

c)

d)

  

Draw the logic circuits for the Boolean expression

shown above and the simplified circuit derived from

your solutions.

b) AB

c) BC

d) BC + BC + AC
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Karnaugh Map Method (K-Map)

• A graphical method of simplifying logic equations 

or truth tables.  Also called a K map.
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Karnaugh Map Method (K-Map)

• A graphical method of simplifying logic equations 

or truth tables.  Also called a K map.

• Theoretically can be used for any number of input 

variables, but practically limited to 4 variables. 5 or 

6 variables can be done but gets complex !
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Karnaugh Map Method

• The truth table values are placed in the K-map 

depending on their location.  
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Karnaugh Map Method

• The truth table values are placed in the K-map 

depending on their location.  

• Adjacent K-map square differ in only one 

variable both horizontally and vertically.
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Karnaugh Map Method

• The truth table values are placed in the K-map 

depending on their location.  

• Adjacent K-map square differ in only one 

variable both horizontally and vertically.

• The pattern from top to bottom and left to right 

must be in the form BAABBABA ,,,

CD CD CD CD

AB

AB

AB

AB

TOP

TO

BOTTOM

LEFT                 RIGHT
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Karnaugh Map Method

• The truth table values are placed in the K map 

as shown in on next slide.  

• Adjacent K map square differ in only one 

variable both horizontally and vertically.

• The pattern from top to bottom and left to right 

must be in the form

• A SOP expression can be obtained by OR-ing 

all squares that contain a 1.

BAABBABA ,,,
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From truth table to K-Map

2-inputs Truth table K-Map
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2-inputs Truth table K-Map

From truth table to K-Map
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3-inputs Truth table
K-Map

From truth table to K-Map
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3-inputs Truth table
K-Map

Sum of Products 

(SOP) expression

From truth table to K-Map
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4-inputs Truth table

From truth table to K-Map



62

4-inputs Truth table K-Map

From truth table to K-Map
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Karnaugh Map Method

• Looping adjacent groups of 2, 4, or 8 that 

contains 1’s will result in further simplification.

2 adjacent 1s
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Karnaugh Map Method

• Looping adjacent groups of 2, 4, or 8 that 

contains 1’s will result in further simplification.

• When the largest possible groups have been 

looped, only the common terms are placed in 

the final expression.

Final expression = ACD + ABD
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Karnaugh Map Method

• Looping adjacent groups of 2, 4, or 8 that 

contains 1’s will result in further simplification.

• When the largest possible groups have been 

looped, only the common terms are placed in 

the final expression.

• Looping may also be wrapped between top, 

bottom, and sides.



66

Looping pairs of adjacent 1’s – One variable is eliminated.
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Looping pairs of adjacent 1’s – One variable is eliminated.
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Looping pairs of adjacent 1’s – One variable is eliminated.
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Looping pairs of adjacent 1’s – One variable is eliminated.
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Looping groups of four adjacent 1’s – Two variables are eliminated. 

4 adjacent 1s
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Looping groups of four adjacent 1’s – Two variables are eliminated. 
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Looping groups of four adjacent 1’s – Two variables are eliminated. 
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Looping groups of four adjacent 1’s – Two variables are eliminated. 
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Looping groups of four adjacent 1’s – Two variables are eliminated. 
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Looping eights of adjacent 1’s – Three variables are eliminated. 
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Looping eights of adjacent 1’s – Three variables are eliminated. 
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Looping eights of adjacent 1’s – Three variables are eliminated. 
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Looping eights of adjacent 1’s – Three variables are eliminated. 
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Week 10- Lecture 2

• Combinatorial logic

– Boolean laws

– Karnaugh Map (K-Map)
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