XMUT 202 Digital Electronics

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

Week 11 Lecture 2

- Sequential Logic
- Flip flops and related devices

Combinational logic

- Outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.

Combinational Logic Circuits

- So far - combinational logic - outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.
- Sequential Logic: The output is determined not only by the state of the inputs, but also by the previous state of the output.

- So far - combinational logic - outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.
- Sequential Logic: The output is determined not only by the state of the inputs, but also by the previous state of the output.
- Sequential circuit is thus a combinations of the combinational logic elements as well as memory elements - the output is a function of both the input as well as the information stored in memory.
- Look at the flip-flop as a building block for sequential logic (the memory element).

- Flip-flops are the core elements in counters and memory systems.

Sequential Logic

Feedback of previous state

Latches, Flip-Flops, multivibrators - what is what?

All have two stable output states - can switch between these using sequential logic

Latch is: Asynchronous
Output is triggered by input signals

Latches, Flip-Flops, multivibrators - what is what ?

Flip-flop is: Synchronous
Edge triggered by clock signal

Latches, Flip-Flops, multivibrators - what is what?

Simple NAND Gate Monostable Circuit

https://www.electronics-tutorials.ws/sequential/seq_3.html
Multivibrators - impressive name - ignore for now (more technical name for a flip-flop)

- Latches and flip-flops (FF) are key elements of counters and memory systems.
- The outputs of a latch/(FF) are Q and $\overline{\mathrm{Q}}$.
- Q is understood to be the normal output, $\overline{\mathrm{Q}}$ is always the opposite.
- When the normal output (Q) is placed in the high or 1 state we say the latch/FF has been set.
- When the normal output (Q) is placed in the low or 0 state we say the latch/FF has been cleared or reset.
- When the normal output (Q) is placed in the high or 1 state we say the latch/FF has been set.
- When the normal output (Q) is placed in the low or 0 state we say the latch/FF has been cleared or reset.

The NAND Gate Latch

- The NAND gate latch is constructed from two cross-coupled NAND gates.
- The inputs are set (S) and clear/reset (C/R).

(a)

The NAND Gate Latch

- The NAND gate latch is constructed from two crosscoupled NAND gates.
- The inputs are set (S) and clear/reset (C/R).
- The inputs are active low - the output will change when the input is pulsed low.
- When the latch is set: $Q=1$ and $\bar{Q}=0$
- When the latch is clear or reset: $Q=0$ and $\bar{Q}=1$

Resting state of the NAND latch

(a)

NAND Gate
Start-up (default) state is $\mathrm{S}=1=\mathrm{C}$

Note that both output states (SET and CLEAR) are derived from the same input states: Both SET and CLEAR are HI - this is then also called the resting state of the latch.

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	1
0	1	1
1	0	1
1	1	0

Resting state of the NAND latch

(a)

(b)

Start-up (default) state is $\mathrm{S}=1=\mathrm{C}$

Note that both output states (SET and CLEAR) are derived from the same input states: Both SET and CLEAR are HI - this is then also called the resting state of the latch.

NAND Gate		
A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

Setting the NAND latch

Active LO: Need to take SET LO to set.

If the latch is in RESET $(\mathrm{Q}=0)$ and SET goes LO then we will see a change in output to the SET $(Q=1)$ output state.

Setting the NAND latch

Active LO: Need to take SET LO to set.

If the latch is in RESET $(\mathrm{Q}=0)$ and SET goes LO then we will see a change in output to the SET $(Q=1)$ output state.

If the latch is in SET $(\mathrm{Q}=1)$ and SET goes LO then we will see no change in output and $Q=1$ will remain the output state.

The SET signal can thus go HI again after the LO pulse but the SET state $(Q=1)$ will remain. Recall: the resting state.

Clearing the NAND latch

Active LO: Need to take CLEAR LO to reset.

If the latch is in SET $(\mathrm{Q}=1)$ and RESET goes LO then we will see a change in output to the RESET $(\mathrm{Q}=0)$ output state.

Clearing the NAND latch

Active LO: Need to take CLEAR LO to reset.

(a)

(b)

If the latch is in RESET $(\mathrm{Q}=0)$ and SET goes LO then we will see no change in output and $\mathrm{Q}=0$ will remain the output state.

If the latch is in SET $(\mathrm{Q}=1)$ and RESET goes LO then we will see a change in output to the RESET $(\mathrm{Q}=0)$ output state.

The RESET signal can thus go HI again after the LO pulse but the SET state ($\mathrm{Q}=$ 1) will remain. Recall: resting state

The NAND gate latch and truth table.

Summary of the NAND latch:

- Set = Clear = 1. Normal resting state, outputs remain in state prior to input.
- Set $=0$, Clear $=1 . Q$ will go high and remain high even if the Set input goes high.
- Set $=1$, Clear $=0$. Q will go low and remain low even if the Clear input goes high.
- Set $=$ Clear $=0$. Output is unpredictable because the latch is being set and cleared at the same time $=$ undesired state

Alternative presentation of NAND gate latch

(a)

(b)

