XMUT 202 Digital Electronics

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science Victoria University of Wellington

Week 11 Lecture 2

- Sequential Logic
 - Flip flops and related devices

Combinational logic

 Outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.

- So far combinational logic outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.
- Sequential Logic: The output is determined not only by the state of the inputs, but also by the previous state of the output.

- So far combinational logic outputs that respond immediately to inputs at some instant in time. Output is only determined by the logic functions and state of the inputs.
- Sequential Logic: The output is determined not only by the state of the inputs, but also by the previous state of the output.
- Sequential circuit is thus a combinations of the combinational logic elements as well as memory elements – the output is a function of both the input as well as the information stored in memory.

• Look at the flip-flop as a building block for sequential logic (the memory element).

 Flip-flops are the core elements in counters and memory systems.

Sequential Logic

Feedback of previous state

Latches, Flip-Flops, multivibrators – what is what?

All have two stable output states – can switch between these using sequential logic

Latch is: Asynchronous

Output is triggered by input signals

Latches, Flip-Flops, multivibrators – what is what?

Flip-flop is: Synchronous

Edge triggered by clock signal

Latches, Flip-Flops, multivibrators – what is what?

Simple NAND Gate Monostable Circuit

https://www.electronics-tutorials.ws/sequential/seq_3.html

Multivibrators – impressive name – ignore for now (more technical name for a flip-flop)

- Latches and flip-flops (FF) are key elements of counters and memory systems.
- The outputs of a latch/(FF) are Q and \overline{Q} .
- Q is understood to be the normal output, Q is always the opposite.
- When the normal <u>output (Q) is placed in the high or 1</u> state we say the latch/FF has been set.
- When the normal <u>output (Q) is placed in the low or 0</u> state we say the latch/FF has been cleared or reset.

- When the normal <u>output (Q) is placed in the high or 1</u> state we say the <u>latch/FF has been set.</u>
- When the normal <u>output (Q) is placed in the low or 0</u> state we say the <u>latch/FF has been cleared or reset.</u>

The NAND Gate Latch

- The NAND gate latch is constructed from two cross-coupled NAND gates.
- The inputs are set (S) and clear/reset (C/R).

The NAND Gate Latch

- The NAND gate latch is constructed from two crosscoupled NAND gates.
- The inputs are set (S) and clear/reset (C/R).
- The inputs are active low the output will change when the input is pulsed low.
- When the latch is set: Q = 1 and $\overline{Q} = 0$
- When the latch is clear or reset: Q = 0 and $\overline{Q} = 1$

Resting state of the NAND latch

Start-up (default) state is S=1=C

Note that both output states (SET and CLEAR) are derived from the same input states: Both SET and CLEAR are HI – this is then also called the **resting** state of the latch.

NAND Gate				
Α	В	X		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Resting state of the NAND latch

Start-up (default) state is S=1=C

Note that both output states (SET and CLEAR) are derived from the same input states: Both SET and CLEAR are HI – this is then also called the **resting** state of the latch.

NAND Gate				
Α	В	Χ		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Setting the NAND latch

Active LO: Need to take SET LO to set.

If the latch is in RESET (Q = 0) and SET goes LO then we will see a change in output to the SET (Q = 1) output state.

Setting the NAND latch

Active LO: Need to take SET LO to set.

If the latch is in RESET (Q = 0) and SET goes LO then we will see a change in output to the SET (Q = 1) output state.

If the latch is in SET (Q = 1) and SET goes LO then we will see no change in output and Q = 1 will remain the output state.

The SET signal can thus go HI again after the LO pulse but the SET state (Q = 1) will remain. Recall: the resting state.

Clearing the NAND latch

Active LO: Need to take CLEAR LO to reset.

If the latch is in SET (Q = 1) and RESET goes LO then we will see a change in output to the RESET (Q = 0) output state.

Clearing the NAND latch

Active LO: Need to take CLEAR LO to reset.

SET 1 Q 1 t_0 t_1 t_0 t_1 t_0 t_1 t_0 t_1 t_0 t_1

If the latch is in RESET (Q = 0) and SET goes LO then we will see no change in output and Q = 0 will remain the output state.

If the latch is in SET (Q = 1) and RESET goes LO then we will see a change in output to the RESET (Q = 0) output state.

The RESET signal can thus go HI again after the LO pulse but the SET state (Q = 1) will remain. Recall: resting state

The NAND gate latch and truth table.

Set	Clear	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid*

^{*}Produces $Q = \overline{Q} = 1$.

(b)

Summary of the NAND latch:

- Set = Clear = 1. Normal resting state, outputs remain in state prior to input.
- Set = 0, Clear = 1. Q will go high and remain high even if the Set input goes high.
- Set = 1, Clear = 0. Q will go low and remain low even if the Clear input goes high.
- Set = Clear = 0. Output is unpredictable because the latch is being set and cleared at the same time = undesired state

Alternative presentation of NAND gate latch

