
XMUT 202 

Digital Electronics

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington



30/05/2024 ECEN 202 : Digital Electronics 2

Week 14

• Synchronous counter design

• Even Odd Counter Design



What kind of circuit counter is this?

What will this circuit do?



And this ?



In the case of the previous two  binary counters we find that the 

counters consist of:

• Sequential element (the flip flops) that provides an output (Q) 

based on the state of their J, K inputs when the synchronous clock 

pulse occurs.

• The combination logic elements  that ensures the J,K inputs are as 

desired to achieve the correct transitions in the FF.

• We could design the 4 bit up counter rather intuitively and with a 

little bit more thinking provide the up-down facility for the 3-bit 

counter.

• Will now look at a general procedure for designing synchronous 

counters, taking into account that the states may not be the normal 

binary order.   



Two examples were of simple binary counters, but often real 

counters have:

•  Some arbitrary (non-binary) counting sequence

•  Possible undesired (hang-up) states.

•  Up/down count ability or special requirements.

Sequential circuit design will now look at a formal method to 

design such circuits that contain both memory and combinatorial 

logic elements

Examples:

• Gray code counter



Start by looking at the truth table for J-K flip flops.



From the truth table we can construct an excitation table 

that states the conditions for J and K in order for a certain 

transition to take place.

Present 

State        

Q(n)

Next 

State     

Q(n+1) J K

0 0 0 0

or 0 1

thus 0 x

0 1 1 0

or 1 1

thus 1 x

1 0 0 1

or 1 1

thus x 1

1 1 1 0

or 0 0

thus x 0



Present

     Q

Next

   Q

J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

In short, the excitation table for J-K flip flops



Similarly for D FF’s

Truth Table

Present 

State        

Q(n)

Next State     

Q(n+1)

Input     

D

0 0 0

0 1 1

1 0 0

1 1 1

Excitation table



Synchronous Counter Design Method 

Example 1: 

Design a synchronous up counter using J-K FF’s that will count 

the first eight binary states.



Step 1: Determine the counting sequence and the 

desired number of bits (FF’s) needed.

Counting Sequence:

000 → 001 → 010 → 011 → 100 → 101 → 110 → 111 → 000

Number of FF’s: MOD 8, thus 3 FF’s

Note notation used here:

C,B and A are the outputs of the three counter stages (J-K flip flops)

Ja, Ka, Jb, Kb, Jc and Kc are the inputs for each of the J-K flip flops



Step 2: Draw the state transition diagram, showing all states 

including the undesired states.

000

001

010

011

100

101

110

111



Step 3: Use the state transition diagram to draw up a table that 

lists all PRESENT state and their NEXT states.

Present 

State 

Q(n)

Next 

State 

Q(n+1)

C B A C B A

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0



Step 4: Add a column to this table for each of the FF input 

that you plan to use. Fill in these columns using the 

FF excitation tables such that the desired transition 

from the PRESENT to the NEXT state is possible.

Present 

State 

Q(n)

Next 

State 

Q(n+1) FF States Needed

C B A C B A Jc Kc Jb Kb Ja Ka

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 0 1 0 0 x 1 x x 1

0 1 0 0 1 1 0 x x 0 1 x

0 1 1 1 0 0 1 x x 1 x 1

1 0 0 1 0 1 x 0 0 x 1 x

1 0 1 1 1 0 x 0 1 x x 1

1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 0 0 0 x 1 x 1 x 1



Step 5: Design the logic circuits needed to generate the levels 

required at each J and K input.

Method 1: Use K-maps for simplification and implement the 

combinational logic circuit for each of the J,K inputs.

For Jc

/A A

/C/B 0 0

/C.B 0 1

C.B x x

C./B x x

Jc=AB

For Kc

/A A

/C/B x x

/C.B x x

C.B 0 1

C./B 0 x

Kc=AB



For Jb

/A A

/C/B 0 1

/C.B x x

C.B x x

C./B 0 1

Jb=A

For Kb

/A A

/C/B x x

/C.B 0 1

C.B 0 1

C./B x x

Kb=A

For Ja

/A A

/C/B 1 x

/C.B 1 x

C.B 1 x

C./B 1 x

Ja=1

For Ka

/A A

/C/B x 1

/C.B x 1

C.B x 1

C./B x 1

Ka=1



We thus have logic requirements:

Ja = Ka = 1

Jb = Kb = A

Jc = Kc = AB 

SIMILAR TO OUR RATHER INTUITIVE DESIGN OF 

EARLIER !

This logic can be implemented either using logic gates or using 

MUXes



Logic implemented with logic gates for a 4-bit synchronous UP 

counter – same what we have intuitively done



We can also construct our logic circuit using 

multiplexers  

Recall from earlier: A multiplexer (MUX) selects one of 

multiple input signals and passes it to the output.



Four-input multiplexer.



Example: Multiplexer used to implement a logic function 

described by the truth table.



It would not be very practical to implement the required logic for 

the 3-bit counter using MUXes, as only the input of the third 

counter stage would require a MUX (For the first stage J=K=1 

and for the second stage J=K=A) 

For the third stage J=K=AB, thus a 4 to 1 MUX as below:

I0

I1

I2

I3

A

B

B

C A

0

0

0

1

1

JJJ

K K K

Z

C B A

Not a good use of a 

4:1 MUX in building 

our 3-bit counter ! An  

AND gate would 

have been simpler ! 



Example 2: 

Design a 3–bit synchronous counter going through the states 000, 

001, 011, 010, 110, 100, 000. Use D FF’s and implement the logic 

using both logic gates and MUXes.

Step 1: Determine the counting sequence and the 

desired number of bits (FF’s) needed.

Number of FF’s:

MOD 6, thus 3 FF’s, but with two undesired states.

Please note the notation used: 

Q0, Q1 and Q2 are the outputs of the three D flip flops

D0, D1 and D2 are the inputs of the three D flip flops 



Step 2: Draw the state transition diagram, showing all states 

including the undesired states.

000

001

011

010

110

100

111101



Steps 3 & 4: Draw excitation table indicating states of FF’s 

needed for transitions. 

Excitation table easy for D flip-flops: The input simply is whatever 

we need the next state to be !



/Q0 Q0

/Q2/Q1 0 0

/Q2 Q1 1 0

Q2 Q1 1 0

Q2 /Q1 0 0

/Q0 Q0

/Q2/Q1 0 1

/Q2 Q1 1 1

Q2 Q1 0 0

Q2 /Q1 0 0

/Q0 Q0

/Q2/Q1 1 1

/Q2 Q1 0 0

Q2 Q1 0 0

Q2 /Q1 0 0

012 QQD = 0Q2Q1Q2Q1D += 1Q2Q0D =

Step 5: Design the logic circuits – done here using K maps. 

The K-maps relate the input parameters (the current state of the 

system) to the desired value of D0, D1 and D2. We thus need three 

K-maps to simplify the logic as shown above.  



D0D1Q1 Q0

CLK

D2Q2

/Q2./Q1

Q1./Q0

/Q2.Q1

/Q2.Q0

Step 6: Implement the logic using either logic gates or MUXes. 



Implementation using MUXes. Note that it is the current state of the 

flip flops (plus any control inputs) that act as the select lines on the 

MUXes. The required input values can be obtained directly from the 

truth table. 

D0D1Q1 Q0

CLK

D2Q2

I0

I1

I2

I3

I4

I5

I7

I6

I0

I1

I2

I3

I4

I5

I7

I6

I0

I1

I2

I3

I4

I5

I7

I6

Q2 Q2 Q2 Q1Q1Q1 Q0 Q0 Q0

D0D1D2

0

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0



Exercise:

You need to design a 3-bit Gray code counter. Do this design 

using:

(a) J-K FF’s and logic gates

(b) D  FF’s and MUXes

(c) Can you add a direction input ?



Remember: Gray code – only one bit changes at a time

000

001

011

010

110

111

101

100



Challenge: Odd – Even counter design

Design a counter that will count through even 3-bit 
binary numbers (000 → 010 → 100 → 110 → 000) when a 
select input D=0 and will count through odd 3-bit binary 
numbers (001 → 011 → 101 → 111 → 001) when D=1. 

When it is in the even count cycle and D changes to D=1, 
it should go to the first count in the odd sequence (001) 
and continue. Similarly, when it is in the odd count cycle 
and D changes to D=0, it should go to the first count in 
the even sequence (000) and continue.

Use J-K flip-flops and logic gates or MUXes for your 
design.



The State Transition Diagram

If the counter is in an even state (orange) and D=0 it 

will go to the next even state (ie 000 →010 → 100 → 

110)

000

110

100

010

001

101 011

111

Even state

D = 0



The State Transition Diagram

If the counter is in an odd state (blue) and D=1 it will 

go to the next odd state

000

110

100

010

001

101

011111
Odd State 

D = 1



The State Transition Diagram

If it is in an even state and D=1 it will transition (green 

arrows) to the 001 state

000

110

100

010

001

101

011111

D = 1



The State Transition Diagram

If it is in an odd state and D=0 it will transition (red 

arrow lines) to the 000 state 

000

110

100

010

001

101

011111

D = 0



000

010

100

110

001

111

101

011

D=0

D=0

D=0

D=0

D=0

D=0

D=0 D=0

D=1D=1

D=1 D=1

D=1

D=1

D=1

D=1

The State Transition Diagram

1. If the counter is in an even state (orange) and D=0 it will go to the next even 

state

2. If the counter is in an odd state (blue) and D=1 it will go to the next odd state

3. If it is in an even state and D=1 it will transition (green) to the 001 state

4. If it is in an odd state and D=0 it will transition (red) to the 000 state 



Present 

Q

Next 

Q J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Reminder: the excitation table for J-K flip flops



Present Next

D Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 0 X 1 X 0 X

0 0 0 1 0 0 0 0 X 0 X X 1

0 0 1 0 1 0 0 1 X X 1 0 X

0 0 1 1 0 0 0 0 X X 1 X 1

0 1 0 0 1 1 0 X 0 1 X 0 X

0 1 0 1 0 0 0 X 1 0 X X 1

0 1 1 0 0 0 0 X 1 X 1 0 X

0 1 1 1 0 0 0 X 1 X 1 X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 1 0 X 1 X X 0

1 0 1 0 0 0 1 0 X X 1 1 X

1 0 1 1 1 0 1 1 X X 1 X 0

1 1 0 0 0 0 1 X 1 0 X 1 X

1 1 0 1 1 1 1 X 0 1 X X 0

1 1 1 0 0 0 1 X 1 X 1 1 X

1 1 1 1 0 0 1 X 1 X 1 X 0



Present Next

D Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 0 X 1 X 0 X

0 0 0 1 0 0 0 0 X 0 X X 1

0 0 1 0 1 0 0 1 X X 1 0 X

0 0 1 1 0 0 0 0 X X 1 X 1

0 1 0 0 1 1 0 X 0 1 X 0 X

0 1 0 1 0 0 0 X 1 0 X X 1

0 1 1 0 0 0 0 X 1 X 1 0 X

0 1 1 1 0 0 0 X 1 X 1 X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 1 0 X 1 X X 0

1 0 1 0 0 0 1 0 X X 1 1 X

1 0 1 1 1 0 1 1 X X 1 X 0

1 1 0 0 0 0 1 X 1 0 X 1 X

1 1 0 1 1 1 1 X 0 1 X X 0

1 1 1 0 0 0 1 X 1 X 1 1 X

1 1 1 1 0 0 1 X 1 X 1 X 0



J2 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 0 0 0 1

/D.Q2 X X X 1(X)

D.Q2 X X (1)X X

D./Q2 0 0 1 0

)()( 0100101012 QDQQDDQQQQDQDQJ =+=+=

For J2



K2 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 X 1(X) 1(X) 1(X)

/D.Q2 0 1 1 1

D.Q2 1 0 1 1

D./Q2 1(X) X 1(X) 1(X)

)( 010012 QDQQDQDQK +=++=

For K2



J1 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1 0 X 1(X)

/D.Q2 1 0 X 1(X)

D.Q2 0 1 1(X) X

D./Q2 0 1 1(X) X

For J1

001 QDQDJ +=



For K1

K1 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1(X) 1(X) 1 1

/D.Q2 1(X) 1(X) 1 1

D.Q2 1(X) 1(X) 1 1

D./Q2 1(X) 1(X) 1 1

11 =K



For J0

J0 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 0 0(X) 0(X) 0

/D.Q2 0 0(X) 0(X) 0

D.Q2 1 1(X) 1(X) 1

D./Q2 1 1(X) 1(X) 1

DJ =0



For K0

K0 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1(X) 1 1 1(X)

/D.Q2 1(X) 1 1 1(X)

D.Q2 0(X) 0 0 0(X)

D./Q2 0(X) 0 0 0(X)

DK =0



We can easily implement this logic with the 

appropriate logic gates based on the logic 

expressions shown below: 

)()( 0100101012 QDQQDDQQQQDQDQJ =+=+=

)( 010012 QDQQDQDQK +=++=

001 QDQDJ += 11 =K

DJ =0 DK =0



We can easily implement this logic with the 

appropriate logic gates. For you to sketch 

the required logic circuits ….

However, we would like to check if the logic 

is easier to implement by means of MUXes.

As we have four variables (D, Q2, Q1, Q0) 

we would most likely need 6 of 16-1 MUXes.



However, we can make several simplifications:

1. We can use 8:1 Muxes for all six outputs if we only use D, 
Q2 and Q1 as the select lines on the Muxes and use Q0 
as an input into the Mux where needed. We should thus 
look at the output pattern required in terms of Q0. 

2. It is obvious that a Mux is not needed for K1, as K1 =1 

3. We also do not need to use Muxes for J0 or K0 as we can 
simply write these in terms of D or /D.





D Q2 Q1

J2

0

/Q0

0(X)

0(X)

0

Q0

0(X)

0(X)

)()( 0100101012 QDQQDDQQQQDQDQJ =+=+=





D Q2 Q1

K2

/Q0

0(X)

0(X)

1

Q0

0(X)

0(X)

1

)( 010012 QDQQDQDQK +=++=



D Q2 Q1

J1

/Q0

0(X)

Q0

0(X)

0(X)

/Q0

Q0

0(X)

001 QDQDJ +=



D Q2 Q1

K1

1(X)

1(X)

1(X)

1(X)

1

1

1

1

But we would not use a 

MUX as K1 = 1

11 =K



D Q2 Q1

J0

0

1

1

1

1

0

0

0

Again do not use 

a MUX as we 

have shown that 

J0 = D

DJ =0



D Q2 Q1

K0

0

1

1

1

1

0

0

0 Again do not use 

a MUX as we 

have shown that 

K0 = /D

So we can implement 
this logic using only 3 
x 8:1 muxes ! How 
does this compare to 
the number of logic 
gates we will have to 
use in the discrete 
solution ? 

DK =0



D Q2 Q1

K2

/Q0

0(X)

0(X)

1

Q0

0(X)

0(X)

1

D Q2 Q1

J2

0

/Q0

0(X)

0(X)

0

Q0

0(X)

0(X)

Can we simplify the design further?



We can make a further simplification by 

combining J2 and K2 into a single mux by 

careful choice of the X states:

D Q2 Q1

J2, K2

0

Q0

/Q0

1

0

1

/Q0

Q0

So we can implement 
this logic using only 2 
x 8:1 muxes !
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