
XMUT 202

Digital Electronics

A/Prof. Pawel Dmochowski

School of Engineering and Computer Science

Victoria University of Wellington

30/05/2024 ECEN 202 : Digital Electronics 2

Week 14

• Synchronous counter design

• Even Odd Counter Design

What kind of circuit counter is this?

What will this circuit do?

And this ?

In the case of the previous two binary counters we find that the

counters consist of:

• Sequential element (the flip flops) that provides an output (Q)

based on the state of their J, K inputs when the synchronous clock

pulse occurs.

• The combination logic elements that ensures the J,K inputs are as

desired to achieve the correct transitions in the FF.

• We could design the 4 bit up counter rather intuitively and with a

little bit more thinking provide the up-down facility for the 3-bit

counter.

• Will now look at a general procedure for designing synchronous

counters, taking into account that the states may not be the normal

binary order.

Two examples were of simple binary counters, but often real

counters have:

• Some arbitrary (non-binary) counting sequence

• Possible undesired (hang-up) states.

• Up/down count ability or special requirements.

Sequential circuit design will now look at a formal method to

design such circuits that contain both memory and combinatorial

logic elements

Examples:

• Gray code counter

Start by looking at the truth table for J-K flip flops.

From the truth table we can construct an excitation table

that states the conditions for J and K in order for a certain

transition to take place.

Present

State

Q(n)

Next

State

Q(n+1) J K

0 0 0 0

or 0 1

thus 0 x

0 1 1 0

or 1 1

thus 1 x

1 0 0 1

or 1 1

thus x 1

1 1 1 0

or 0 0

thus x 0

Present

 Q

Next

 Q

J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

In short, the excitation table for J-K flip flops

Similarly for D FF’s

Truth Table

Present

State

Q(n)

Next State

Q(n+1)

Input

D

0 0 0

0 1 1

1 0 0

1 1 1

Excitation table

Synchronous Counter Design Method

Example 1:

Design a synchronous up counter using J-K FF’s that will count

the first eight binary states.

Step 1: Determine the counting sequence and the

desired number of bits (FF’s) needed.

Counting Sequence:

000 → 001 → 010 → 011 → 100 → 101 → 110 → 111 → 000

Number of FF’s: MOD 8, thus 3 FF’s

Note notation used here:

C,B and A are the outputs of the three counter stages (J-K flip flops)

Ja, Ka, Jb, Kb, Jc and Kc are the inputs for each of the J-K flip flops

Step 2: Draw the state transition diagram, showing all states

including the undesired states.

000

001

010

011

100

101

110

111

Step 3: Use the state transition diagram to draw up a table that

lists all PRESENT state and their NEXT states.

Present

State

Q(n)

Next

State

Q(n+1)

C B A C B A

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

Step 4: Add a column to this table for each of the FF input

that you plan to use. Fill in these columns using the

FF excitation tables such that the desired transition

from the PRESENT to the NEXT state is possible.

Present

State

Q(n)

Next

State

Q(n+1) FF States Needed

C B A C B A Jc Kc Jb Kb Ja Ka

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 0 1 0 0 x 1 x x 1

0 1 0 0 1 1 0 x x 0 1 x

0 1 1 1 0 0 1 x x 1 x 1

1 0 0 1 0 1 x 0 0 x 1 x

1 0 1 1 1 0 x 0 1 x x 1

1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 0 0 0 x 1 x 1 x 1

Step 5: Design the logic circuits needed to generate the levels

required at each J and K input.

Method 1: Use K-maps for simplification and implement the

combinational logic circuit for each of the J,K inputs.

For Jc

/A A

/C/B 0 0

/C.B 0 1

C.B x x

C./B x x

Jc=AB

For Kc

/A A

/C/B x x

/C.B x x

C.B 0 1

C./B 0 x

Kc=AB

For Jb

/A A

/C/B 0 1

/C.B x x

C.B x x

C./B 0 1

Jb=A

For Kb

/A A

/C/B x x

/C.B 0 1

C.B 0 1

C./B x x

Kb=A

For Ja

/A A

/C/B 1 x

/C.B 1 x

C.B 1 x

C./B 1 x

Ja=1

For Ka

/A A

/C/B x 1

/C.B x 1

C.B x 1

C./B x 1

Ka=1

We thus have logic requirements:

Ja = Ka = 1

Jb = Kb = A

Jc = Kc = AB

SIMILAR TO OUR RATHER INTUITIVE DESIGN OF

EARLIER !

This logic can be implemented either using logic gates or using

MUXes

Logic implemented with logic gates for a 4-bit synchronous UP

counter – same what we have intuitively done

We can also construct our logic circuit using

multiplexers

Recall from earlier: A multiplexer (MUX) selects one of

multiple input signals and passes it to the output.

Four-input multiplexer.

Example: Multiplexer used to implement a logic function

described by the truth table.

It would not be very practical to implement the required logic for

the 3-bit counter using MUXes, as only the input of the third

counter stage would require a MUX (For the first stage J=K=1

and for the second stage J=K=A)

For the third stage J=K=AB, thus a 4 to 1 MUX as below:

I0

I1

I2

I3

A

B

B

C A

0

0

0

1

1

JJJ

K K K

Z

C B A

Not a good use of a

4:1 MUX in building

our 3-bit counter ! An

AND gate would

have been simpler !

Example 2:

Design a 3–bit synchronous counter going through the states 000,

001, 011, 010, 110, 100, 000. Use D FF’s and implement the logic

using both logic gates and MUXes.

Step 1: Determine the counting sequence and the

desired number of bits (FF’s) needed.

Number of FF’s:

MOD 6, thus 3 FF’s, but with two undesired states.

Please note the notation used:

Q0, Q1 and Q2 are the outputs of the three D flip flops

D0, D1 and D2 are the inputs of the three D flip flops

Step 2: Draw the state transition diagram, showing all states

including the undesired states.

000

001

011

010

110

100

111101

Steps 3 & 4: Draw excitation table indicating states of FF’s

needed for transitions.

Excitation table easy for D flip-flops: The input simply is whatever

we need the next state to be !

/Q0 Q0

/Q2/Q1 0 0

/Q2 Q1 1 0

Q2 Q1 1 0

Q2 /Q1 0 0

/Q0 Q0

/Q2/Q1 0 1

/Q2 Q1 1 1

Q2 Q1 0 0

Q2 /Q1 0 0

/Q0 Q0

/Q2/Q1 1 1

/Q2 Q1 0 0

Q2 Q1 0 0

Q2 /Q1 0 0

012 QQD = 0Q2Q1Q2Q1D += 1Q2Q0D =

Step 5: Design the logic circuits – done here using K maps.

The K-maps relate the input parameters (the current state of the

system) to the desired value of D0, D1 and D2. We thus need three

K-maps to simplify the logic as shown above.

D0D1Q1 Q0

CLK

D2Q2

/Q2./Q1

Q1./Q0

/Q2.Q1

/Q2.Q0

Step 6: Implement the logic using either logic gates or MUXes.

Implementation using MUXes. Note that it is the current state of the

flip flops (plus any control inputs) that act as the select lines on the

MUXes. The required input values can be obtained directly from the

truth table.

D0D1Q1 Q0

CLK

D2Q2

I0

I1

I2

I3

I4

I5

I7

I6

I0

I1

I2

I3

I4

I5

I7

I6

I0

I1

I2

I3

I4

I5

I7

I6

Q2 Q2 Q2 Q1Q1Q1 Q0 Q0 Q0

D0D1D2

0

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

Exercise:

You need to design a 3-bit Gray code counter. Do this design

using:

(a) J-K FF’s and logic gates

(b) D FF’s and MUXes

(c) Can you add a direction input ?

Remember: Gray code – only one bit changes at a time

000

001

011

010

110

111

101

100

Challenge: Odd – Even counter design

Design a counter that will count through even 3-bit
binary numbers (000 → 010 → 100 → 110 → 000) when a
select input D=0 and will count through odd 3-bit binary
numbers (001 → 011 → 101 → 111 → 001) when D=1.

When it is in the even count cycle and D changes to D=1,
it should go to the first count in the odd sequence (001)
and continue. Similarly, when it is in the odd count cycle
and D changes to D=0, it should go to the first count in
the even sequence (000) and continue.

Use J-K flip-flops and logic gates or MUXes for your
design.

The State Transition Diagram

If the counter is in an even state (orange) and D=0 it

will go to the next even state (ie 000 →010 → 100 →

110)

000

110

100

010

001

101 011

111

Even state

D = 0

The State Transition Diagram

If the counter is in an odd state (blue) and D=1 it will

go to the next odd state

000

110

100

010

001

101

011111
Odd State

D = 1

The State Transition Diagram

If it is in an even state and D=1 it will transition (green

arrows) to the 001 state

000

110

100

010

001

101

011111

D = 1

The State Transition Diagram

If it is in an odd state and D=0 it will transition (red

arrow lines) to the 000 state

000

110

100

010

001

101

011111

D = 0

000

010

100

110

001

111

101

011

D=0

D=0

D=0

D=0

D=0

D=0

D=0 D=0

D=1D=1

D=1 D=1

D=1

D=1

D=1

D=1

The State Transition Diagram

1. If the counter is in an even state (orange) and D=0 it will go to the next even

state

2. If the counter is in an odd state (blue) and D=1 it will go to the next odd state

3. If it is in an even state and D=1 it will transition (green) to the 001 state

4. If it is in an odd state and D=0 it will transition (red) to the 000 state

Present

Q

Next

Q J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Reminder: the excitation table for J-K flip flops

Present Next

D Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 0 X 1 X 0 X

0 0 0 1 0 0 0 0 X 0 X X 1

0 0 1 0 1 0 0 1 X X 1 0 X

0 0 1 1 0 0 0 0 X X 1 X 1

0 1 0 0 1 1 0 X 0 1 X 0 X

0 1 0 1 0 0 0 X 1 0 X X 1

0 1 1 0 0 0 0 X 1 X 1 0 X

0 1 1 1 0 0 0 X 1 X 1 X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 1 0 X 1 X X 0

1 0 1 0 0 0 1 0 X X 1 1 X

1 0 1 1 1 0 1 1 X X 1 X 0

1 1 0 0 0 0 1 X 1 0 X 1 X

1 1 0 1 1 1 1 X 0 1 X X 0

1 1 1 0 0 0 1 X 1 X 1 1 X

1 1 1 1 0 0 1 X 1 X 1 X 0

Present Next

D Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 0 X 1 X 0 X

0 0 0 1 0 0 0 0 X 0 X X 1

0 0 1 0 1 0 0 1 X X 1 0 X

0 0 1 1 0 0 0 0 X X 1 X 1

0 1 0 0 1 1 0 X 0 1 X 0 X

0 1 0 1 0 0 0 X 1 0 X X 1

0 1 1 0 0 0 0 X 1 X 1 0 X

0 1 1 1 0 0 0 X 1 X 1 X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 1 0 X 1 X X 0

1 0 1 0 0 0 1 0 X X 1 1 X

1 0 1 1 1 0 1 1 X X 1 X 0

1 1 0 0 0 0 1 X 1 0 X 1 X

1 1 0 1 1 1 1 X 0 1 X X 0

1 1 1 0 0 0 1 X 1 X 1 1 X

1 1 1 1 0 0 1 X 1 X 1 X 0

J2 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 0 0 0 1

/D.Q2 X X X 1(X)

D.Q2 X X (1)X X

D./Q2 0 0 1 0

)()(0100101012 QDQQDDQQQQDQDQJ =+=+=

For J2

K2 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 X 1(X) 1(X) 1(X)

/D.Q2 0 1 1 1

D.Q2 1 0 1 1

D./Q2 1(X) X 1(X) 1(X)

)(010012 QDQQDQDQK +=++=

For K2

J1 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1 0 X 1(X)

/D.Q2 1 0 X 1(X)

D.Q2 0 1 1(X) X

D./Q2 0 1 1(X) X

For J1

001 QDQDJ +=

For K1

K1 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1(X) 1(X) 1 1

/D.Q2 1(X) 1(X) 1 1

D.Q2 1(X) 1(X) 1 1

D./Q2 1(X) 1(X) 1 1

11 =K

For J0

J0 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 0 0(X) 0(X) 0

/D.Q2 0 0(X) 0(X) 0

D.Q2 1 1(X) 1(X) 1

D./Q2 1 1(X) 1(X) 1

DJ =0

For K0

K0 /Q1./Q0 /Q1.Q0 Q1.Q0 Q1./Q0

/D/Q2 1(X) 1 1 1(X)

/D.Q2 1(X) 1 1 1(X)

D.Q2 0(X) 0 0 0(X)

D./Q2 0(X) 0 0 0(X)

DK =0

We can easily implement this logic with the

appropriate logic gates based on the logic

expressions shown below:

)()(0100101012 QDQQDDQQQQDQDQJ =+=+=

)(010012 QDQQDQDQK +=++=

001 QDQDJ += 11 =K

DJ =0 DK =0

We can easily implement this logic with the

appropriate logic gates. For you to sketch

the required logic circuits ….

However, we would like to check if the logic

is easier to implement by means of MUXes.

As we have four variables (D, Q2, Q1, Q0)

we would most likely need 6 of 16-1 MUXes.

However, we can make several simplifications:

1. We can use 8:1 Muxes for all six outputs if we only use D,
Q2 and Q1 as the select lines on the Muxes and use Q0
as an input into the Mux where needed. We should thus
look at the output pattern required in terms of Q0.

2. It is obvious that a Mux is not needed for K1, as K1 =1

3. We also do not need to use Muxes for J0 or K0 as we can
simply write these in terms of D or /D.

D Q2 Q1

J2

0

/Q0

0(X)

0(X)

0

Q0

0(X)

0(X)

)()(0100101012 QDQQDDQQQQDQDQJ =+=+=

D Q2 Q1

K2

/Q0

0(X)

0(X)

1

Q0

0(X)

0(X)

1

)(010012 QDQQDQDQK +=++=

D Q2 Q1

J1

/Q0

0(X)

Q0

0(X)

0(X)

/Q0

Q0

0(X)

001 QDQDJ +=

D Q2 Q1

K1

1(X)

1(X)

1(X)

1(X)

1

1

1

1

But we would not use a

MUX as K1 = 1

11 =K

D Q2 Q1

J0

0

1

1

1

1

0

0

0

Again do not use

a MUX as we

have shown that

J0 = D

DJ =0

D Q2 Q1

K0

0

1

1

1

1

0

0

0 Again do not use

a MUX as we

have shown that

K0 = /D

So we can implement
this logic using only 3
x 8:1 muxes ! How
does this compare to
the number of logic
gates we will have to
use in the discrete
solution ?

DK =0

D Q2 Q1

K2

/Q0

0(X)

0(X)

1

Q0

0(X)

0(X)

1

D Q2 Q1

J2

0

/Q0

0(X)

0(X)

0

Q0

0(X)

0(X)

Can we simplify the design further?

We can make a further simplification by

combining J2 and K2 into a single mux by

careful choice of the X states:

D Q2 Q1

J2, K2

0

Q0

/Q0

1

0

1

/Q0

Q0

So we can implement
this logic using only 2
x 8:1 muxes !

	Slide 1: XMUT 202 Digital Electronics
	Slide 2: Week 14
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Synchronous Counter Design Method
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Four-input multiplexer.
	Slide 22: Example: Multiplexer used to implement a logic function described by the truth table.
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

