ID Number	:
Full Name:	

ECEN202 DIGITAL ELECTRONICS Practice TEST

2024

Time allowed: 60 MINUTES

CLOSED BOOK

Permitted materials: No programmable calculators are allowed.

No electronic dictionaries are allowed.

Paper foreign to English language dictionaries are

allowed.

Instructions: Attempt ALL questions.

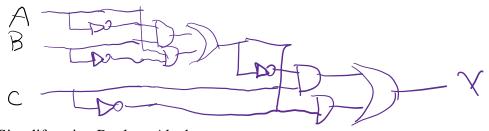
There are 4 questions in this test paper:

Space for working out your solutions is provided at the end of every section.

Question	Topic	Allocated Marks	Obtained Marks	
1	Logic and Boolean Algebra	25		
2	Combinational Logic	35		
3	Latches and Flip Flops	15		
4	Counters and Frequency Dividers	25		
	TOTAL	100		

Question 1 - Logic and Boolean Algebra

25 marks


a) Write the Boolean expression for the outputs X and Y of the following circuit. (10 marks)

X = A xor B xor C = (A'B+AB') C'+(A'B+AB') C'

Y = AB + C (A xor B)

b) Draw a circuit diagram for **X** in part a) using only AND, OR and NOT gates. (8 marks)

c) Simplify using Boolean Algebra

(3 marks)

$$X = (\overline{AB})(\overline{A} + B)(\overline{B} + B)$$

$$= (\overline{A} + \overline{B})(\overline{A} + \overline{B})$$

$$= \overline{A} + \overline{A} + \overline{B} + \overline{B} + \overline{B}$$

$$= \overline{A} + \overline{A} + \overline{B} + \overline{B} + \overline{B}$$

a) Simplify using Boolean Algebra

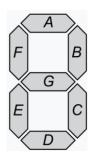
(4 marks)

$$X = ABC + A\overline{B}(\overline{A}\overline{C})$$

$$= ABC + AB(\overline{A}C)$$

$$= ABC + AB(A+C)$$

$$= ABC + AB + ABC$$


$$= ACC + AB$$

$$= A(C+B)$$

Question 2 – Combinational Logic

35 marks

We want to design a logic circuit for a 7-segment LED display shown below.

The inputs are 4 binary digits **d**, **c**, **b**, **a**, which represent the number to be displayed on the LED. Bit **d** is the most significant bit (MSB), and **a** is the least significant bit (LSB). Each LED segment (labelled A, B, C, ... G on the diagram) has its own logic. For example, LED D is ON when **dcba** represent decimal numbers 0, 2, 3, 5, 6, 8 or 9.

a) Produce a truth table to drive LED labelled E 0 2 6 8

(10 marks)

d	c	b	a	E
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

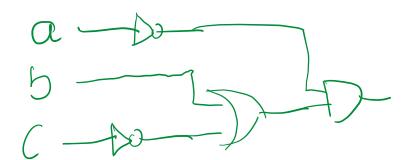
b) Write the sum-of-products (SOP) expression for E

(5 marks)

E=d'c'b'a' + d'c'b a' +d'cba' +d c'b'a'

c) Use a K-map to simplify the logic expression for E.

(10 marks)

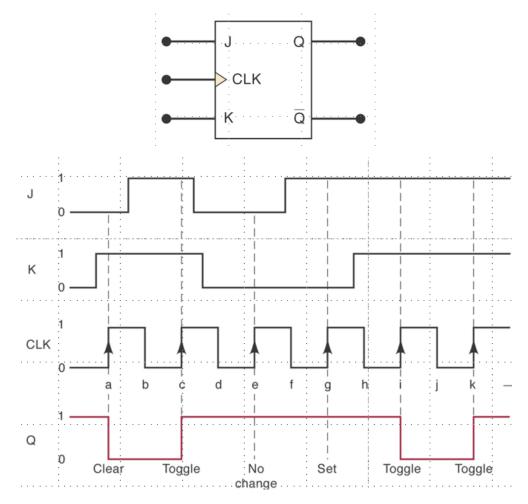

(Write your answer in the table provided below. Clearly mark the loop(s) of adjacent 1s.

	b'a'	b'a	ba	ba'
ďc'	1	0	0	1
d'c	0	0	0	1
dc	X	X	X	X
dc'/	1	0	X	X

$$E = c'a' + ba' = a'(b+c')$$

d) Draw a logic diagram for G using as few gates as possible.

(10 marks)

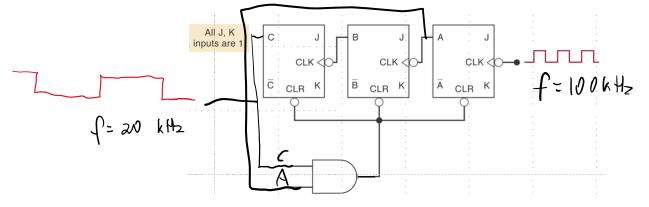


[CLEARLY write your ID number in the space shown above]

Question 3 – Latches and Flip Flops

15 marks

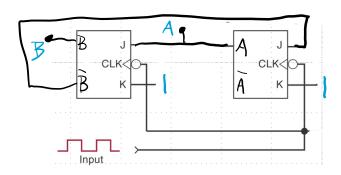
For the Flip Flop and the timing diagram below, draw the resulting output waveform Q. Explain the reason for each change in the value of Q. Assume Q starts high.



Question 4 – Counters and Frequency Dividers

25 marks

a) Using J-K Flip Flops, design a circuit that produces a 20 kHz clock from a 100kHz clock. You must use an **asynchronous** design. (7 marks)


To divide the clock by 5, we need a MOD 5 counter. Thus, we use 3 JK FFs and use C=A=1 to reset it at 5. All J,K inputs = 1.

b) Using J-K Flip Flops, design a logic circuit that produces a 30 kHz clock from a 90 kHz clock. This time use a **synchronous** design. (18 marks) Hint: What is the Mod Number? How many FFs do you need? You can use the JK excitation table at the back of the test.

We require a MOD 3 counter, so 2 FFs are needed. The states of the counter are: 00 - 01 - 10 - 00 ... Use excitation table for JK:

JU	Use ex	citatioi	i table i	Of JK									
	Q(n)		Q(n-	⊦1)		J1		K1	J	0	K0	
	В	Α		В	Α								
	0	0		0	1		0		X	1	L	X	
	0	1		1	0		1		X)	(1	
	1	0		0	0		Х		1	()	X	
	1	1		X	X		Х		X	>	(X	
J1	Α'	Α	K1	A'	Α		JO	A'	Α		K0	A'	Α
B'	0	1	B'	Х	х		B'	1	Х		B'	Х	1
В	х	х	В	1	х		В	0	Х		В	Х	х
	J1=A, J0=B', K1=1, K0=1;												

	ID Number:
[CLEARLY write your ID number in the space shown above]	

Fundamental Laws and Theorems of Boolean Algebra

$$1. X + 0 = X$$

2.
$$X + 1 = 1$$

OR operations

3.
$$X + X = X$$

$$7. X.X = X$$

8.
$$X \cdot \overline{X} = 0$$

Double complement

10.
$$X + Y = Y + X$$
 Commutative laws

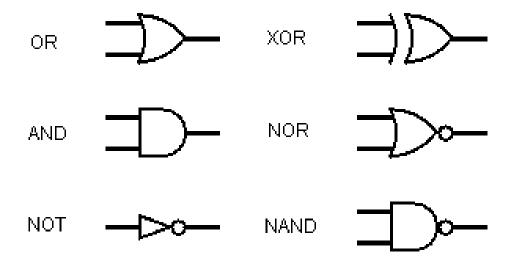
12.
$$(X + Y) + Z = X + (Y + Z)$$
 Associative laws

14.
$$X(Y + Z) = XY + XZ$$
 Distribution Law

15.
$$X + Y . Z = (X + Y) . (X + Z)$$
 Dual of Distributive Law

16.
$$X + XZ = X$$
 Laws of absorption

$$17. \qquad X(X+Z) = X$$


18.
$$X+\overline{X}Y=X+Y$$
 | Identity Theorems

19.
$$X(\overline{X}+Y)=X.Y$$

20.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$
 De Morgan's Theorems

21.
$$\overline{X}.\overline{Y} = \overline{X} + \overline{Y}$$

Logic Gate Symbols:

Excitation tables:

JK FF:

Present	Next	J	K
Q	Q		
0	0	0	x
0	1	1	x
1	0	X	1
1	1	X	0

D FF:

Present State Q(n)	Next State Q(n+1)	Input D
0	0	0
0	1	1
1	1	1