ID Number:

Full Name:

ECEN202 DIGITAL ELECTRONICS Practice TEST 2024

Time allowed: 60 MINUTES

CLOSED BOOK

Permitted materials: No programmable calculators are allowed.

No electronic dictionaries are allowed.

Paper foreign to English language dictionaries are allowed.

Instructions: Attempt ALL questions.

There are 4 questions in this test paper:

Space for working out your solutions is provided at the end of every section.

Question	Торіс	Allocated Marks	Obtained Marks	
1	Logic and Boolean Algebra	25		
2	Combinational Logic	35		
3	Latches and Flip Flops	15		
4	Counters and Frequency Dividers	25		
	TOTAL	100		

Question 1 – Logic and Boolean Algebra

25 marks

a) Write the Boolean expression for the outputs X and Y of the following circuit. (10 marks)

b) Draw a circuit diagram for **X** in part a) using only AND, OR and NOT gates. (8 marks)

c) Simplify using Boolean Algebra

(3 marks)

$$X = (\overline{AB})(\overline{A} + B)(\overline{B} + B)$$

a) Simplify using Boolean Algebra

(4 marks)

$$X = ABC + A\bar{B}(\bar{A}\bar{C})$$

Question 2 – Combinational Logic

We want to design a logic circuit for a 7-segment LED display shown below.

a) Produce a truth table to drive LED labelled E

d

С

b	a	Ε

b) Write the sum-of-products (SOP) expression for E

(5 marks)

35 marks

(10 marks)

ID Number:

[CLEARLY write your ID number in the space shown above]

c) Use a K-map to simplify the logic expression for E.

(10 marks)

(Write your answer in the table provided below. Clearly mark the loop(s) of adjacent 1s.

E =

d) Draw a logic diagram for G using as **few gates as possible**.

(10 marks)

Question 3 – Latches and Flip Flops

15 marks

For the Flip Flop and the timing diagram below, draw the resulting output waveform Q. **Explain the reason for each change in the value of Q**. Assume Q starts **high**.

[CLEARLY write your ID number in the space shown above]

Question 4 – Counters and Frequency Dividers

a) Using J-K Flip Flops, design a circuit that produces a 20 kHz clock from a 100kHz clock. You must use an **asynchronous** design. (7 marks)

b) Using J-K Flip Flops, design a logic circuit that produces a 30 kHz clock from a 90 kHz clock. This time use a synchronous design. (18 marks) Hint: What is the Mod Number? How many FFs do you need? You can use the JK excitation table at the back of the test.

6

25 marks

ID Number:

[CLEARLY write your ID number in the space shown above]

Fundamental Laws and Theorems of Boolean Algebra

1.	X + 0 = X
2.	X + 1 = 1 OR operations
3.	X + X = X
4.	$X + \overline{X} = 1$
5.	X.0=0
б.	X . 1 =X AND operations
7.	$\mathbf{X} \cdot \mathbf{X} = \mathbf{X}$
8.	$\mathbf{X} \cdot \overline{\mathbf{X}} = 0$
9.	$\overline{X} = X$ Double complement
10.	X + Y = Y + X Commutative laws
11.	XY = YX
12.	(X + Y) + Z = X + (Y + Z) Associative laws
13.	(X . Y). Z = X. (Y. Z)
14.	X(Y + Z) = XY + XZ Distribution Law
15.	X + Y . Z = (X + Y) . (X + Z) Dual of Distributive Law
16.	X + XZ = X Laws of absorption
17.	X(X+Z) = X
18.	$X + \overline{X} Y = X + Y$] Identity Theorems
19.	$X(\overline{X}+Y) = X.Y$
20.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$ De Morgan's Theorems
21.	$\overline{X.Y} = \overline{X} + \overline{Y}$

[CLEARLY write your ID number in the space shown above]

OR \longrightarrow XOR \implies AND \implies NOR \implies

Logic Gate Symbols:

Excitation tables:

JK FF:

D FF:

Present	Next	J	K	Prese
Q 0	Q 0	0	x	Stat Q(n
0	1	1	X	
1	0	X	1	
1	1	x	0	

	Present State Q(n)	Next State Q(n+1)	Input D
	0	0	0
	0	1	1
•••	1	0	0
	1	1	1

9