XMUT 202 Digital Electronics

Felix Yan

School of Engineering and Computer Science Victoria University of Wellington

> Victoria UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

CAPITAL CITY UNIVERSITY

Asynchronous Down Counter

A: Toggles as normal

B: Toggles when A goes LO to HI

C: Toggles when B goes LO to HI

Solution: Drive each clock input from the inverted input of the preceding FF

Asynchronous Down Counter

MOD 8 down counter

Asynchronous Down Counter

MOD 8 down counter

The Problem with Ripple Counters: Propagation Delay

For proper operation:

$$T_{clock} \ge N \ge t_{pd}$$

$$F_{max} = 1/(N \ge t_{pd})$$

where N = number of FFs.

Example: Four bit ripple counter constructed from a 74LS112 J-K flip flop.

 $t_{PLH} = 16 \text{ ns and } t_{PHL} = 24 \text{ ns}$

What is highest frequency that can be used?

Example: Four bit ripple counter constructed from a 74LS112 J-K FF.

 $t_{PLH} = 16 \text{ ns and } t_{PHL} = 24 \text{ ns}$

What is highest frequency that can be used?

 $f_{max} = 1/(4 \text{ x } 24 \text{ ns}) = 10.4 \text{ MHz}$

This frequency limitation inhibits the use of asynchronous counters at moderately high frequencies

Example: What is the highest frequency that a ripple counter with a MOD number 60 constructed from a 74LS112 J-K flip flop can operate at?

 $t_{PLH} = 16 \text{ ns and } t_{PHL} = 24 \text{ ns}$

Example: What is the highest frequency that a ripple counter with a MOD number 60 constructed from a 74LS112 J-K flip flop can operate at?

 $t_{PLH} = 16 \text{ ns and } t_{PHL} = 24 \text{ ns}$

 $f_{max} = 1/(6 \times 24 \text{ ns}) = 6.9 \text{ MHz}$

 Solution to the previous problem - All FFs are triggered by CPs simultaneously

- Solution to the previous problem All FFs are triggered by CPs simultaneously
- Each FF has J and K inputs connected so they are HIGH only when the outputs of all lower-order FFs are HIGH.

- Solution to the previous problem All FFs are triggered by CPs simultaneously
- Each FF has J and K inputs connected so they are HIGH only when the outputs of all lower-order FFs are HIGH.
- The total propagation delay will be the same for any number of FFs.

- Solution to the previous problem All FFs are triggered by CPs simultaneously
- Each FF has J and K inputs connected so they are HIGH only when the outputs of all lower-order FFs are HIGH.
- The total propagation delay will be the same for any number of FFs.
- Synchronous counters can operate at much higher frequencies than asynchronous counters.

Synchronous MOD 16 counter

Synchronous MOD 16 counter

	Truth table				
Count		D	С	В	Α
0		0	0	0	0
1		0	0	0	1
2		0	0	1	0
3		0	0	1	1
4		0	1	0	0
5		0	1	0	1
6		0	1	1	0
7		0	1	1	1
8		1	0	0	0
9		1	0	0	1
10		1	0	1	0
11		1	0	1	1
12		1	1	0	0
13		1	1	0	1
14		1	1	1	0
15		1	1	1	1
0		0	0	0	0
			а.		
			•	•	
			etc.	•	

 The synchronous counter can be converted to a down counter by using the inverted FF outputs to drive the JK inputs.

- The synchronous counter can be converted to a down counter by using the inverted FF outputs to drive the JK inputs.
- A synchronous counter can be made an up/down counter by suitable connections.

- The synchronous counter can be converted to a down counter by using the inverted FF outputs to drive the JK inputs.
- A synchronous counter can be made an up/down counter by suitable connections.
- Available in IC form with Up/Down control input.

MOD 8 Up/Down Counter

(a)

Presettable Counters

- A presettable counter can be set to any desired starting point either asynchronously or synchronously.
- The preset operation is also called parallel loading the counter.
- The next figure illustrates an asynchronous preset.
- There are several TTL and CMOS devices that provide both synchronous and asynchronous presetting.

Presettable counter with asynchronous reset.

Decoding a Counter

- Decoding is the conversion of a binary output to a decimal value.
- The active high decoder shown in the next figure could be used to light an LED representing each decimal number 0 to 7
- Active low decoding is obtained by replacing the AND gates with NAND gates.

Design a 3 – bit synchronous counter that will decode binary state 2 and binary state 7.

Cascading BCD Counters

• Operation of a decimal 000 to 999 BCD counter

Cascading BCD Counters

- Initially all counters are reset to 0
- Each input pulse advances the first counter once.
- The 10th input pulse causes the counter to recycle, which advances the second counter 1.
- This continues until the second counter (10's digit) recycles, which advances the third counter 1.
- The cycle repeat until 999 is reached and all three counters start again at zero.