XMUT 202 Digital Electronics

Felix Yan

School of Engineering and Computer Science Victoria University of Wellington

Boolean Algebra - Basic Rules

1.
$$A + 0 = A$$

7.
$$A \cdot A = A$$

$$2. A + 1 = 1$$

8.
$$A \cdot \overline{A} = 0$$

3.
$$A \cdot 0 = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

5.
$$A + A = A$$

11.
$$A + \overline{A}B = A + B$$

6.
$$A + \overline{A} = 1$$

12.
$$(A + B)(A + C) = A + BC$$

Simplification from looping:

<u>Pair</u>: Looping a pair of adjacent 1's eliminate the variable that appears in complemented and uncomplemented form.

Simplification from looping:

<u>Pair</u>: Looping a pair of adjacent 1's eliminate the variable that appears in complemented and uncomplemented form.

Quad: Looping 4 adjacent 1's eliminate the two variables that appears in complemented and uncomplemented form.

Simplification from looping:

<u>Pair</u>: Looping a pair of adjacent 1's eliminate the variable that appears in complemented and uncomplemented form.

Quad: Looping 4 adjacent 1's eliminate the two variables that appears in complemented and uncomplemented form.

Octet: Looping 8 adjacent 1's eliminate the three variables that appears in complemented and uncomplemented form.

Complete K-Map simplification process

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to include 1s not already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ ABCD

Simplify the following Boolean expression:

ABorbof Product (SOP) expression

Simplify the following Boolean expression:

	ĊΩ	ĒD	CD	СD
ĀB				
ĀB				
AB				
ΑB				

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:

	ΖŪ	СD	CD	СD
ĀB				1
ĀB		1	1	
AB		1	1	
ΑB			1	

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

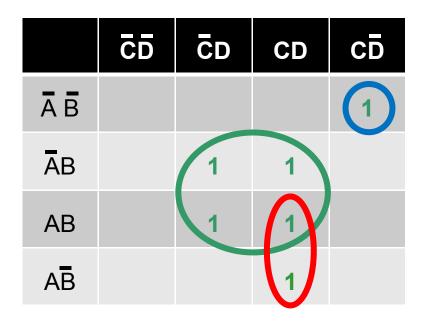
Simplify the following Boolean expression:

	ĊΩ	СD	CD	СD
ĀB				1
ĀB		1	1	
AB		1	1	
ΑB			1	

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

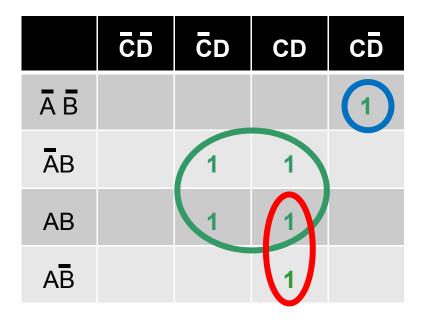
Simplify the following Boolean expression:

	ĊΩ	ĒD	CD	СD
ĀB				1
ĀB		1	1	
AB		1	1	
ΑB			1	

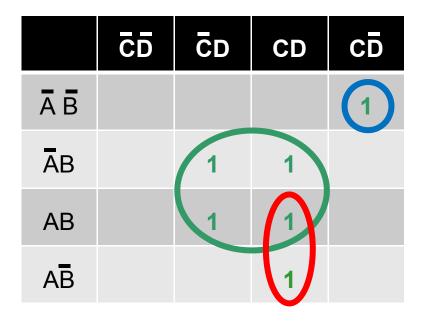

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:

	ĊΦ	СD	CD	С <u>Б</u>
ĀB				1
ĀB		1	1	
AB		1	1	
ΑB			1	


- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped. (none here)
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

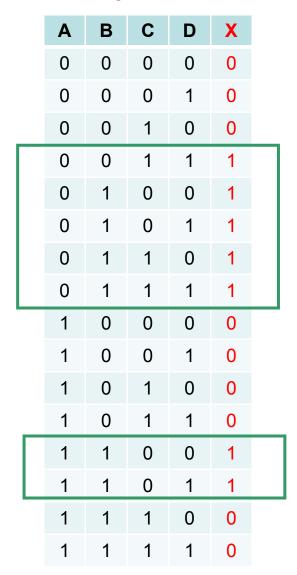
Simplify the following Boolean expression:


- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to include 1s not already looped. (none here)
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:



- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following truth table:

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

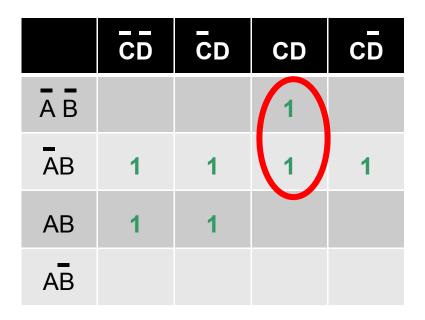
Simplify the following truth table:

Simplify the following Boolean expression:

ABCD+ ABCD

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:

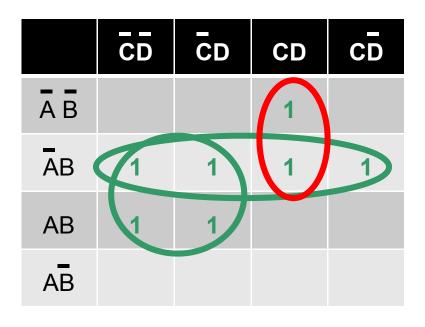

ABCD+ ABCD

	CD	- CD	CD	CD
ĀB			1	
- AB	1	1	1	1
AB	1	1		
AB				

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

	CD	- CD	CD	CD
Ā B			1	
ĀB	1	1	1	1
AB	1	1		
AB				

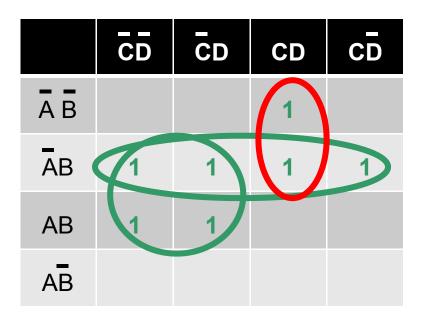
- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s (none)
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

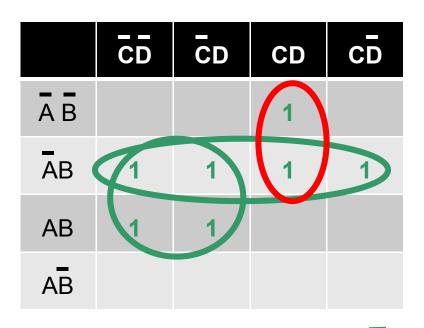

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

	CD	<u>C</u> D	CD	CD
ĀB			1	
ĀB	1	1	1	1
AB	1	1		
AB				

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped. (none)
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:


ABCD+ ABCD


- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Simplify the following Boolean expression:

ABCD+ ABCD

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs *and cannot be looped into quads or octets.*
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped (none here)
- 7. Form the OR sum of terms generated by each loop.

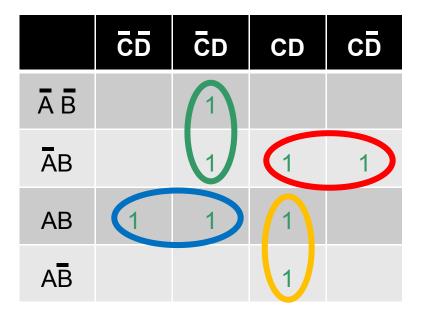
- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that have one or more 1s not already looped.
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

Try this one:

Simplify the following truth table using the K-Map method

5 minutes

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1


Exercise: K-Map simplification

Boolean expression derived from the truth table:

	ĒŪ	СD	CD	СD
ĀB		1		
ĀB		1	1	1
AB	1	1	1	
ΑB			1	

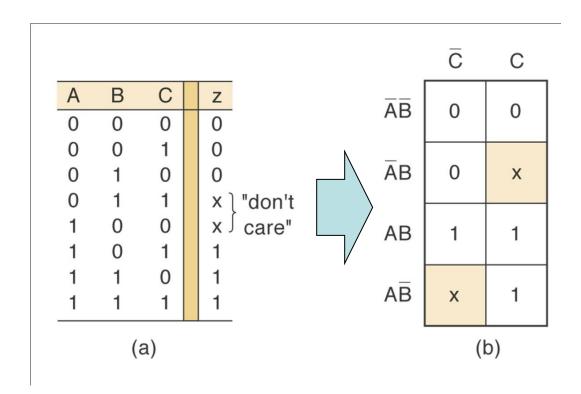
Exercise: K-Map simplification

Boolean expression derived from the truth table:

- 1. Construct the K map, place 1s as per the truth table.
- 2. Loop 1s that are not adjacent to any other 1s.
- 3. Loop 1s that are in pairs and cannot be looped into quads or octets.
- 4. Loop 1s in octets (8) even if they have already been looped.
- 5. Loop quads (4) that <u>have one or more 1s not</u> <u>already looped.</u>
- 6. Loop any pairs (2) necessary to *include 1s not* already looped.
- 7. Form the OR sum of terms generated by each loop.

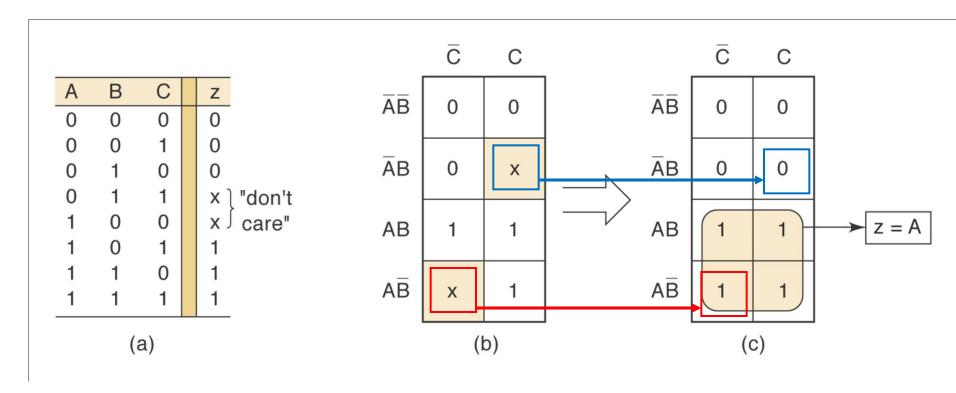
Don't Care Output Conditions

Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occurs when we know certain input conditions are impossible.


Don't care Output Conditions

Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occur when we know certain input conditions are impossible.

Α	В	С	Z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	ΧÌ	don't
1	0	0	X	care"
1	0	1	1	
1	1	0	1	
1	1	1	1	
	(;	a)		

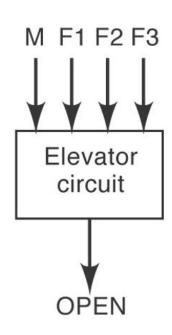

Don't care Output Conditions

Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occur when we know certain input conditions are impossible.

Don't care Output Conditions

Can be changed 0/1 so that the simplest expression can be obtained from the K-map. Typically occur when we know certain input conditions are impossible.

Example: Design a logic circuit for a three storey elevator.



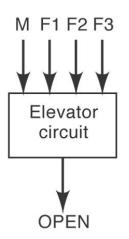
Example: Design a logic circuit for a three-storey elevator.

M = Logic signal indicating if the elevator is moving (M = 1) or stationary (M = 0)

F1, F2 and F3 are the floor level signals, normally LO but go HI when a particular floor is reached.

The circuit output (O/P) is the "Door Open" signal, should be normally LO but go HI when the door is to open

М	F1	F2	F3	OPEN
0	0	0	0	972A
0	0	0	1	
0	0	1	0	
0	0	1	1	9
0	1	0	0	-
0	1	0	1	
0	1	1	0	
0	1	1	1	otoote
1	0	0	0	V228
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	•
1	1	0	1	
1	1	1	0	
1	1	1	1	155.00EX


M = elevator moving

F1 = Floor 1

F2 – Floor 2

F3 – Floor 3

OPEN – elevator door opening

М	F1	F2	F3	OPEN
0	0	0	0	NOTES A
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	255,434753
1	0	0	0	1000
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

- Can only be on one floor at a time (only one floor I/P can be HI).
- The other floor I/P's are then don't care conditions.
- Use x to indicate the don't care conditions.
- Door can't open when moving!

М	F1	F2	F3	OPEN
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	X X X
0	1	1	0	Χ
0	1	1	1	Χ
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	Χ
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X X X
1	1	1	1	X

- Can only be on one floor at a time (only one floor I/P can be HI).
- The other floor I/P's are then don't care conditions.
- Use x to indicate the don't care conditions.
- Door can't open when moving!

М	F1	F2	F3	OPEN
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	X X X
0	1	1	0	Χ
0	1	1	1	Χ
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	Χ
1	1	0	0	0
1	1	0	1	0 X X X
1	1	1	0	Χ
1	1	1	1	Х

- Can only be on one floor at a time (only one floor I/P can be HI).
- The other floor I/P's are then don't care conditions.
- Use x to indicate the don't care conditions.
- Door can't open when moving!

 $OPEN = \overline{MF1F2F3} + \overline{MF1F2F3} + \overline{MF1F2F3}$

F2F3 F2F3 F2F3

∏ F1	0	1	Χ	1
M F1	1	Х	X	Х
M F1	0	Х	Х	Х
M F1	0	0	X	0

F2F3 F2F3 F2F3 F2F3

M F1	0	1	Х	1
M F1	1	Х	X	Х
M F1	0	Х	X	Х
M F1	0	0	Х	0

F2F3 F2F3 F2F3

M F1	0	1	1	1
M F1	1	1	1	1
M F1	0	0	0	0
M F1	0	0	0	0

OPEN = \overline{M} (F1 + F2 + F3)

Exercises

Use the K-Map method to simplify the following:

a)
$$AB + A(B + C) + B(B + C)$$

b)
$$A\overline{B} + A(\overline{B+C}) + B(\overline{B+C})$$
.

c)
$$[\overline{AB}(C + BD) + \overline{A}\overline{B}]C$$

d)
$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$