XMUT 202 Digital Electronics

Felix Yan

School of Engineering and Computer Science Victoria University of Wellington

Review Exercise 2 (Gates and Latches)

5-3. The waveforms of Figure 5-61 are connected to the circuit of Figure 5-62. Assume that Q = 0 initially, and determine the Q waveform.

Interesting application of a latch – Eliminating mechanical switch bounce

Interesting application of a latch – Eliminating mechanical switch bounce

The NOR Gate Latch

• The NOR latch is similar to the NAND latch except that the Q and \overline{Q} outputs are reversed.

The NOR Gate Latch

- The NOR latch is similar to the NAND latch except that the Q and \overline{Q} outputs are reversed.
- The Set and Clear inputs are active high, that is, the output will change when the input is pulsed high.

The NOR Gate Latch

- The NOR latch is similar to the NAND latch except that the Q and \overline{Q} outputs are reversed.
- The Set and Clear inputs are active high, that is, the output will change when the input is pulsed high.
- In order to ensure that a latch/FF begins operation at a known level, a pulse may be applied to the Set or Clear inputs when a device is powered up.

The NOR gate latch

Set	Clear	Output
0	0	No change
1	0	Q = 1
0	1	Q = 0
1	1	Invalid*

^{*}Produces $Q = \overline{Q} = 0$. (b)

The NOR gate latch

NOR	Gate	
Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

change
= 1
= 0
valid*
יו

(b)

- SET = CLEAR = 0: Normal resting state no effect on O/P state.
- SET = 1, CLEAR = 0: gets Q = 1, will remain when SET goes LO.
- SET = 0, CLEAR = 1: Clear to Q = 0, remain when CLEAR goes LO.
- SET = 1 = CLEAR, Tries to set and clear simultaneously, not allowed.

Clock Signals and Flip-Flops

Now add a **clock signal** (another input to a latch) in order to synchronise the change in output.

- Asynchronous system outputs can change state at any time the input(s) change = latch as we have seen.
- Synchronous system output can change state only at a specific time. This timing is determined by a clock input change in output will be synchonized with the clock cycle = flip-flop. Inputs will then only have effect at the clock event.

• The clock signal is a rectangular pulse train or square wave.

- The clock signal is a rectangular pulse train or square wave.
- Positive Going Transition (PGT) when clock pulse goes from 0 to 1.

• Negative Going Transition (NGT) – when clock pulse goes from 1 to 0.

- The clock signal is a rectangular pulse train or square wave.
- Positive Going Transition (PGT) when clock pulse goes from 0 to 1.
- Negative Going Transition (NGT) when clock pulse goes from 1 to 0.
- Transitions are also called edges.
- It is the **edges** that are <u>important</u>, not the HI or LO portions.

- Clocked FFs change state on one or the other clock transitions. Some common characteristics:
 - 1. Clock inputs are labeled CLK, CK, or CP.

- Clocked FFs change state on one or the other clock transitions. Some common characteristics:
 - 1. Clock inputs are labeled CLK, CK, or CP.
 - 2. A small triangle at the CLK input indicates that the input is activated with a PGT.
 - 3. A bubble and a triangle indicates that the CLK input is activated with a NGT.

A small triangle at the CLK input indicates that the input is activated with a PGT.

A bubble and a triangle indicates that the CLK input is activated with a NGT.

- Clocked FFs change state on one or the other clock transitions. Some common characteristics:
 - 1. Clock inputs are labeled CLK, CK, or CP.
 - 2. A small triangle at the CLK input indicates that the input is activated with a PGT.
 - 3. A bubble and a triangle indicates that the CLK input is activated with a NGT.
 - 4. Control inputs have an effect on the output only at the active clock transition (NGT or PGT). These are also called synchronous control inputs.

- Clocked FFs change state on one or the other clock transitions. Some common characteristics:
 - 1. Clock inputs are labeled CLK, CK, or CP.
 - 2. A small triangle at the CLK input indicates that the input is activated with a PGT.
 - 3. A bubble and a triangle indicates that the CLK input is activated with a NGT.
 - 4. Control inputs have an effect on the output only at the active clock transition (NGT or PGT). These are also called synchronous control inputs.
 - 5. The control inputs get the FF outputs ready to change, but the change is not triggered until the CLK edge.

 Setup time, T_S is the minimum time interval before the active CLK transition that the control input must be kept at the proper level.

- Setup time, T_S is the minimum time interval before the active CLK transition that the control input must be kept at the proper level.
- Hold time, T_H is the time following the active transition of the CLK during which the control input must be kept at the proper level.

Setup and hold time

Clocked S-C Flip-Flop

- The set-clear (or set-reset) FF will change states at the positive going or negative going clock edge.
- (note: NOR implementation, active high)

	Input	S	Output	
S	С	CLK	Q	
0	0	1	Q ₀ (no change)	
1	0	1	1	
0	1	1	0	
1	1	1	Ambiguous	

Q₀ is output level prior to [↑]of CLK. ↓ of CLK produces no change in Q.

(c)

change

Negative –edge clocked S-C flip-flop.

Internal circuitry of the edge triggered S-C FF

Consists of three different sections:

- 1. A basic NAND gate latch (NAND 3 and NAND 4)
- 2. Pulse steering circuit (NAND 1 and NAND 2)
- 3. Edge detector circuit

Edge detector circuits.

Positive Going Transition

Negative Going Transition

FF making transition from RESET to SET on PGT of clock

The S and R (another label for Clear) inputs to the FF below is active HI – The inputs to the NAND latch is still active LO.

FF making transition from SET to RESET on the PGT of clock.

The S and R (another label for Clear) inputs to the FF below is active HI – The inputs to the NAND latch is still active LO.

Clocked J-K Flip-Flop

- Overcomes the disallowed state of S-C FF.
- Operates like S-C FF, but with J = set and K= clear.
- When J and K are both HI, the output is toggled from whatever state it is in to the opposite state.
- May be positive or negative going clock trigger.
- Has the ability to do everything the S-C FF does, plus operate in toggle mode.

Clocked J-K Flip Flop (triggers on PGT)

J-K flip flop triggering on NGT

Internal circuitry of edge triggered J-K flip flop.

Clocked D Flip-Flop

- One data input.
- The output changes to the value of the input at either the positive going or negative going clock trigger (device dependent).
- May be implemented with a J-K FF by tying the J input to the K input through an inverter.
- Useful for parallel data transfer.

D FF implementation from a J-K FF

D flip flop triggering on PGT's

Parallel data transfer using D flip flops.

*After occurrence of NGT

D Latch (Transparent Latch)

- One data input.
- The clock has been replaced by an enable (EN) line.
- The device is NOT edge triggered.
- The output follows the input only when EN is active.

Structure of the D latch

Inputs	Output
EN D	Q
0 X	Q ₀ (no change)
1 0	0
1 1	1

"X" indicates "don't care." Q₀ is state Q just prior to EN going LOW.

(b)

Operation of the D latch

Asynchronous Inputs

- Inputs that depend on the clock are synchronous.
- Most clocked FFs have <u>additional asynchronous</u> inputs that do not depend on the clock.
- These I/P's are used to preset (Q = 1) or clear (Q = 0)
 the FF Active regardless of the state of the other
 I/P's.
- Also called override inputs.
- If the asynchronous inputs are not used they will be tied to their inactive state.

Clocked J-K FF with asynchronous inputs.

PRESET	CLEAR	FF response
1	1	Clocked operation*
0	1	Q = 1 (regardless of CLK)
1	0	Q = 0 (regardless of CLK)
0	0	Not used

*Q will respond to J, K, and CLK.

- The labels PRE and CLR are used for asynchronous inputs.
- Active low asynchronous inputs will have a bar over the labels and inversion bubbles.

Clocked FF responding to asynchronous inputs

Clocked FF responding to asynchronous inputs

Point	Operation
а	Synchronous toggle on NGT of CLK
b	Asynchronous set on PRE = 0
С	Synchronous toggle
d	Synchronous toggle
е	Asynchronous clear on CLR = 0
f	CLR overrides the NGT of CLK
g	Synchronous toggle

In the circuit of Figure 5-71, inputs A, B, and C are all initially LOW. Output Y is supposed to go HIGH only when A, B, and C go HIGH in a certain sequence.

- (a) Determine the sequence that will make Y go HIGH.
- (b) Explain why the START pulse is needed.

3/7/2025

IEEE/ANSI Symbols

Note the differences in the representations below.

