

length of this unit cell is 0.54 nm.

XMUT204 Electronic Design Assignment 1: Introduction to Semiconductor

Due Date: Friday, 14th March 2025, 19:59 China time (online submission to XMUT204 website at VUW)

٧U	vv j							
Tot	tal 9	0 marks	S.					
1.	It is given that Copper has 8.5×10^{22} conduction electrons per cm ³ and the mobility of a conduction electron is $35 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ (consider that temperature is at $300 ^{\circ}\text{K}$).							
	a.	Calcul	ate the conductivity of Copper.	[5 marks]				
	b.	In an electronics project, you need to construct your own inductor. The instruction for making this inductor is to wind it from a 1.2 meters length of #20 AWG (American wire gauge) copper wire.						
		i.	How thick is this wire in mm (i.e. find its radius) ?	[5 marks]				
		ii.	What will be the resistance of your inductor?	[5 marks]				
2.	at :		the conductivity of a piece of pure Silicon if it is given the number of intries 1 x 10^{10} cm ⁻³ and that the electron and hole mobilities are μ_e = 1350 cm ⁻³ \cdot V ⁻¹ .s ⁻¹ .					
3.	Со	nductiv	ity of materials depends on the temperature.					
	a.	 a. Compare the conductivities between Silicon and Copper at 300°K as calculated from Question (1) and (2) above. Give a reason for the cause of the result of your comparison. [5 marks] 						
	b.	carrie	emperature now increases to 350°K. Describe semi-quantitatively how an reconcentration and the conductivity will change due to this temperature hese two materials.	•				

[15 marks]

4. A unit cell of the crystal structure of Silicon is in Figure 1 shown below. It is given that the side

a. Calculate the number of Silicon atoms in one cm³ (i.e. the density) of the material.

Figure 1: Silicon crystal structure

- b. Another way to calculate the density is by looking at the macroscopic density. This is specified for Silicon to be 2.32 g.cm⁻³. Calculate the number of Silicon atoms per cm³ based on this information. [Hint: Your high school chemistry may help a bit here by making use of the Avagrado's number $(6.022 \times 10^{23} \text{ atoms/mole})$] [10 marks]
- c. A small Silicon wafer is 3 inches (76mm) in diameter and 300 μm thick. Calculate the number of Silicon atoms that should be contained in this wafer. [10 marks]
- 5. Silicon is doped by adding Arsenide atoms to a level of 5 x 10¹⁵ atoms/cm³ of Arsenide (consider that temperature is at 300°K). Calculate:
 - a. the concentration and type of majority and minority carriers.

[5 marks]

- b. the conductivity of the Silicon. How does this conductivity compare to the conductivity values calculated in Questions (1) and (2). [5 marks]
- 6. Sketch the energy band diagram for a p-type semiconductor and indicate the expected position of mobile charge carriers in this diagram. [5 marks]
- 7. Explain the concepts of intrinsic and extrinsic -carrier concentration in a semiconductor. [5 marks]

8. Germanium and Gallium Arsenide are two other common semiconductor materials. Obtain a value for the bandgap in each of these two semiconductors and compare that to the value of the

- bandgap in Silicon. What would you expect the value of the intrinsic carrier concentration to be for each of the two materials? [5 marks]
- 9. Describe the steps required in microfabrication of semiconductor devices. [2.5 marks]
- 10. Draw and describe the semiconductor layer structures of conventional diode, BJT and MOSFET transistors. [7.5 marks]

Marking Schedule

Student ID		
Student Name	:	

No	Description	Mark	Your Mark	Remarks
1	a. Conductivity of Copper.	5		
	b(i). Thickness of wire.	5		
	b(ii). Resistance of inductor.	5		
2	Conductivity of pure Silicon.	5		
3	a. Comparison of conductivity and reasoning of the result of comparison.	5		
	b. Description of how and why carrier concentration and conductivity change as temperature increases.	5		
4	a. Number of Silicon atoms.	15		
	b. Number of Silicon atoms by microscopic density method.	10		
	c. Number of atoms in Silicon wafer.	10		
5	a. Concentration and type of majority and minorities carriers	5		
	b. Conductivity of Silicon and its comparison with results in questions (1) and (2).	5		
6	Sketch of energy band and indicated expected position of mobile carriers in the diagram.	5		
7	Description of intrinsic and extrinsic carrier concentration in a semiconductor.	5		
8	Values of bandgaps and values of intrinsic carrier concentration.	5		

9	Steps in microfabrication of semiconductor devices.	2.5	
10	Sketch and brief description of layer structures of conventional diode, BJT and MOSFET.	7.5	
	Total		

Comment: