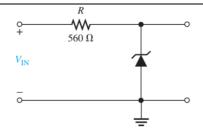
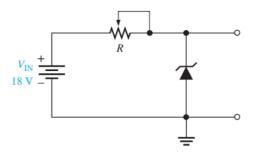


Section A: Zener Diode

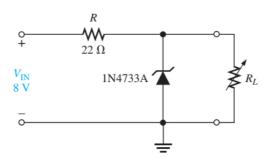
- 1. Describe three differences of Zener diode compared with conventional diode. [3 marks]
- 2. From the characteristic curve in the figure given below, what is the approximate minimum Zener current (I_{ZK}) and the approximate Zener voltage at I_{ZK} . [2 marks]



3. Sketch the equivalent circuit models of Zener diode.


[2 marks]

- 4. A certain Zener diode has $V_z = 7.5$ V and $Z_z = 5$ V at a certain current. Draw the equivalent circuit. [2 marks]
- 5. When the reverse current in a particular Zener diode increases from 20 mA to 30 mA, the Zener voltage changes from 5.6 V to 5.65 V. What is the impedance of this device? [2 marks]
- 6. A Zener has an impedance of 15 Ω . What is its terminal voltage at 50 mA if $V_Z = 4.7$ V at $I_Z = 25$ mA? [4 marks]
- 7. A certain Zener diode has the following specifications: $V_Z = 6.8$ V at 25°C and TC = +0.04 %/°C. Determine the Zener voltage at 70°C. [4 marks]
- 8. For the circuit given in the figure below.



- a. Determine the minimum input voltage required for regulation to be established in the figure below. Assume an ideal Zener diode with $I_{ZK} = 1.5$ mA and $V_Z = 14$ V. [4 marks]
- b. Repeat for $Z_Z = 20 \Omega$ and $V_Z = 14 \text{ V}$ at 30 mA.
- 9. For the given Zener diode circuit shown in the figure below.

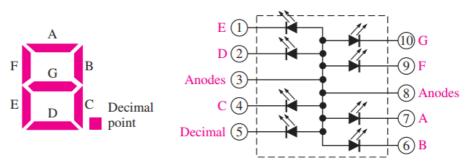
- a. To what value must R be adjusted to make $I_Z = 40$ mA? Assume $V_Z = 12$ V at 30 mA and $Z_Z = 30 \Omega$. [8 marks]
- b. A 20 V peak sinusoidal voltage is applied to the circuit in place of the dc source. Draw the output waveform. Use the parameter values established in (a). [6 marks]
- 10. A loaded Zener regulator is shown in the figure below.

- a. Determine the minimum and maximum permissible load current. [14 marks]
- b. Find the load regulation expressed as a percentage. [6 marks]
- 11. The no-load output voltage of a certain Zener regulator is 8.23 V, and the full-load output is 7.98V. Calculate the load regulation expressed as a percentage? [2 marks]
- 12. In a certain Zener regulator, the output voltage changes 0.2 V when the input voltage goes from

[6 marks]

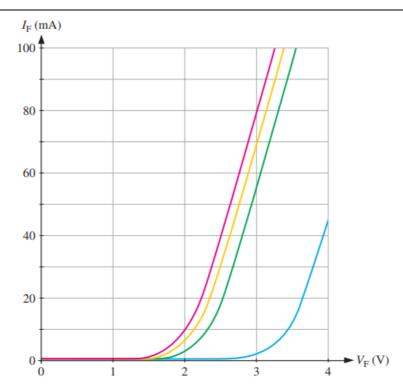


5 V to 10 V. What is the input regulation expressed as a percentage?


[2 marks]

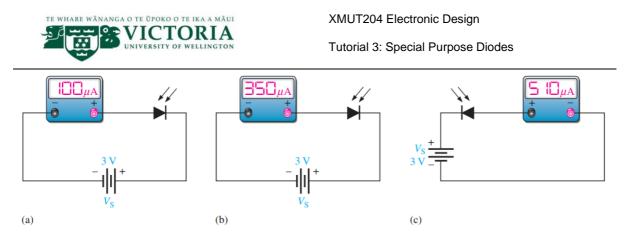
Section B: LED Diode

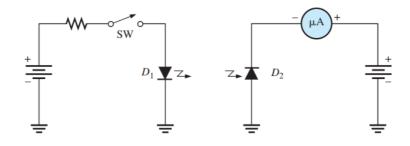
 The LED in the circuit in part (a) of the figure given below has a light-producing characteristic as shown in part (b). Taking into account the forward voltage drop of the LED (i.e. 2 V for a red LED), determine the amount of radiant (light) power produced in mW.


- 2. Referring to the TSMF1000 LED datasheet (see Appendix).
 - a. Can 9 V be applied in reverse across a TSMF1000 LED? [2 marks]
 b. Determine the typical value of series resistor for TSMF1000 when a voltage of 5.1 V is used to forward-bias the diode with I_F = 20 mA. [4 marks]
 - c. Assume the forward current is 50 mA and the forward voltage drop is 1.5 V at an ambient temperature of 15 °C. Is the maximum power rating exceeded? [4 marks]
 - d. Determine the radiant intensity for a forward current of 40 mA. [2 marks]
 - e. What is the radiant intensity at an angle of 20° from the axis if the forward current is 100 mA? [8 marks]
- Determine how to connect the seven-segment display in the figure given below to display "5". The maximum continuous forward current for each LED is 30 mA and a +5 V dc source is to be used.
 [8 marks]

By referring to the V-I curve of a given diode in the figure below, specify the number of limiting resistors and their value for a series-parallel array of 48 red LEDs using a 9 V dc source for a forward current of 20 mA.

TE WHARE WĀNANGA O TE ŪPOKO O TE IKA A MĀUI VICTORIA UNIVERSITY OF WELLINGTON

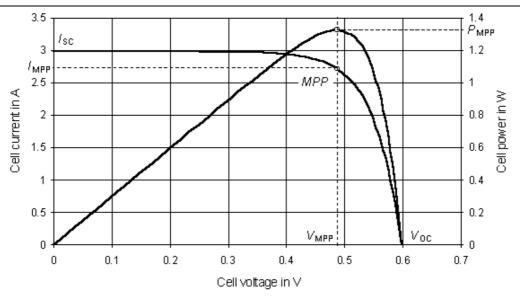

Tutorial 3: Special Purpose Diodes


5. Develop a yellow LED traffic-light array using a minimum number of limiting resistors that operates from a 24 V supply and consists of 100 LEDs with $I_F = 30$ mA and an equal number of LEDs in each parallel branch. Show the circuit and the resistor values. [12 marks]

Section C: Photo Diode

- 1. Referring to the TEMD1000 photodiode datasheet (see Appendix).
 - a. A TEMD1000 photodiode is connected in series with a 1 k Ω resistor and a reverse-bias voltage source. There is no incident light on the diode. What is the maximum voltage drop across the resistor? [2 marks]
 - b. At what wavelength will the reverse current be the greatest for a given irradiance? [2 marks]
 - c. At what wavelength is relative spectral sensitivity of the TEMD1000 equals to 0.4? [2 marks]
- 2. For a certain photodiode at a given irradiance, the reverse resistance is 200 k Ω and the reverse voltage is 10 V. What is the current through the device? [2 marks]
- 3. What is the resistance of each photodiode given in the figure below? [6 marks]

4. When the switch in the figure given below is closed, will the micro-ammeter reading increase or decrease? Assume D_1 and D_2 are optically coupled. [2 marks]


Section D: Solar Cells

- 1. What are the four elements of a solar power system? [4 marks]
- The solar cells are the main building block of installation of the solar power system. Assume that a solar cell is rated at 0.5 V and 2 A, suggest the most feasible arrangement of 48 pieces of solar cell for a load of 12 V battery having a 1 kVAh capacity (note: assume that there is some power loses in the distribution of the solar system unit).
- 3. Describe the photoelectrical generation processes in a given solar cell. [6 marks]
- 4. Outline the main construction of a typical solar cell panel. [4 marks]
- 5. Describe the V-I curve characteristics of a solar cell as compared with V-I curve characteristics of a conventional diode. [4 marks]
- 6. Installation of solar power systems requires analysis using the Maximum Power Point (MPP) curve graph.

XMUT204 Electronic Design

Tutorial 3: Special Purpose Diodes

Use the MPP curve as given in the figure above to estimate and calculate the following design parameters specified for a solar power unit (note that the graph is based on the one solar cell characteristics instead of characteristics of a unit of cells):

a.	a. The voltage and current at extreme points (e.g. open circuit voltage and short circuit		
	current).	[4 marks]	
b.	The maximum power point (e.g. current and voltage at this point).	[4 marks]	
c.	The maximum power delivered by a unit of 10 solar cells connected in series.	[2 marks]	
d.	The load resistance at the maximum power transfer.	[2 marks]	
e.	The fill factor of the unit (i.e. 10 cm x 10 cm solar cell with P-incident-light = 1 k)	<i>N/</i> m²).	
		[2 marks]	
f.	The efficiency of the unit.	[8 marks]	

Section E: Solar Power Systems

Solar Systems

1.	What are the functions of the four elements of a solar power system?	[4 marks]
2.	How must solar cells be connected to increase output voltage?	[2 marks]
3.	What is the function of the charge controller?	[2 marks]
4.	What is the function of the inverter?	[2 marks]
5.	What range of solar panels in terms of output voltage and power are available?	[4 marks]

Charge Controller and Batteries

6. Why must deep-cycle batteries be used in solar power systems? [2 marks]

7.	Why should a 12 V battery be charged at a higher than its rated voltage?	[2 marks]
8.	Which type of charge controller is the most efficient?	[2 marks]
9.	What range in terms of power is commercially available in charge controllers?	[4 marks]
10	. Two 12 V, 250 Ah batteries are connected in series and then connected in parallel more series-connected batteries of the same type. What is the total output voltage rating of the battery array?	

Inverter Systems

11. What is the difference between a stand-alone inverter and a grid-tie inverter?	[2 marks]
12. What are three types of inverters in terms of the output waveforms?	[3 marks]
13. How much average power should a solar power system for your home produce for January? Hint: Use your utility bill.	the month of [4 marks]
14. Is net metering available in your area?	[2 marks]
15. What is the range of inverters in terms of power that are commercially available?	[4 marks]

Tracking Systems

16. What are two types of solar trackers in terms of the way they move?	[2 marks]
17. What is the difference between azimuth and elevation?	[2 marks]
18. On what date does the winter solstice occur?	[2 marks]
19. On what date does the summer solstice occur?	[2 marks]
20. Would you recommend a single-axis or a dual-axis tracker for a flat-panel collector	? Why? [2 marks]

Appendix 1 – Key Formulas

Description	Formulae
Radiant power of LED	$P_D = V_F \times I_F$
Radiant intensity of LED	Radiant Intensity = $I_F(\theta) \times V_F(\theta), \theta$ = angle
Wavelength of photo diode	Refer to datasheet (this depends on spectral sensitivity)
MPP Power (P_{MAX})	$P_{MAX} = V_{MPP} \times I_{MPP}$
Fill factor of solar cells	Fill factor = $\frac{P_{MAX}}{I_{SC} \times V_{OC}}$
Panel Area	$A_{Panel} =$ Number of Cell × A_{Cell}
% Efficiency	$\% \text{eff} = \frac{P_{MAX}}{P_{100}} \%$
Power consumed per day	Power/day = Total Power × Hours
Cost per day	Cost/day = Total Power x Hours x \$/kWh
Line regulation	Line Regulation = $\left(\frac{\Delta V_{out}}{\Delta V_{in}}\right) \times 100\%$
Load regulation	Load Regulation = $\left(\frac{V_{NL} - V_{FL}}{V_{FL}}\right) \times 100\%$

Appendix 2 – Datasheet of 1N4733A Zener Diode

June 2007

1N4728A - 1N4758A Zener Diodes

Absolute Maximum Ratings * Ta = 25°C unless otherwise noted

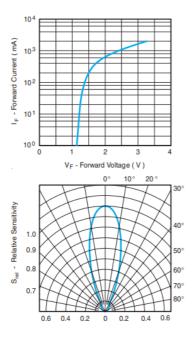
Symbol	Parameter	Value	Units
PD	Power Dissipation @ TL ≤ 50°C, Lead Length = 3/8"	1.0	w
	Derate above 50°C	6.67	mW/°C
TJ, TSTG	Operating and Storage Temperature Range	-65 to +200	°C

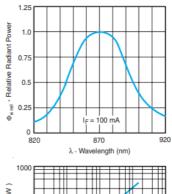
* These ratings are limiting values above which the serviceability of the diode may be impaired.

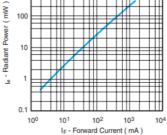
Electrical Characteristics T_a = 25°C unless otherwise noted

	Vz	(V) @ I _Z 🕅	iote 1)	Test Current	Max. Z	ener Impe	dance	Leakage	Current
Device	Min.	Тур.	Max.	Intest Current	Zz@Iz (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μΑ)	V _R (V)
1N4728A	3.315	3.3	3.465	76	10	400	1	100	1
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2
1N4735A	5.89	6.2	6.51	41	2	700	1	10	3
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6
1N4739A	8.645	9.1	9.555	28	5	700	0.5	10	7
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1
1N4743A	12.35	13	13.65	19	10	700	0.25	5	9.9
1N4744A	14.25	15	15.75	17	14	700	0.25	5	11.4
1N4745A	15.2	16	16.8	15.5	16	700	0.25	5	12.2
1N4746A	17.1	18	18.9	14	20	750	0.25	5	13.7
1N4747A	19	20	21	12.5	22	750	0.25	5	15.2
1N4748A	20.9	22	23.1	11.5	23	750	0.25	5	16.7
1N4749A	22.8	24	25.2	10.5	25	750	0.25	5	18.2
1N4750A	25.65	27	28.35	9.5	35	750	0.25	5	20.6
1N4751A	28.5	30	31.5	8.5	40	1000	0.25	5	22.8
1N4752A	31.35	33	34.65	7.5	45	1000	0.25	5	25.1
1N4753A	34.2	36	37.8	7	50	1000	0.25	5	27.4
1N4754A	37.05	39	40.95	6.5	60	1000	0.25	5	29.7
1N4755A	40.85	43	45.15	6	70	1500	0.25	5	32.7
1N4756A	44.65	47	49.35	5.5	80	1500	0.25	5	35.8
1N4757A	48.45	51	53.55	5	95	1500	0.25	5	38.8
1N4758A	53.2	56	58.8	4.5	110	2000	0.25	5	42.6

Appendix 3 - LED Datasheet (TSMF1000)


Absolute Maximum Ratings


and = 25 G, unless otherwise specified						
Parameter	Test condition	Symbol	Value	Unit		
Reverse Voltage		VR	5	V		
Forward current		lF	100	mA		
Peak Forward Current	$tp/T = 0.5, tp = 100 \ \mu s$	IFM	200	mA		
Surge Forward Current	t _p = 100 μs	IFSM	0.8	A		
Power Dissipation		Pv	190	mW		
Junction Temperature		Tj	100	°C		
Operating Temperature Range		Tamb	- 40 to + 85	°C		


Basic Characteristics

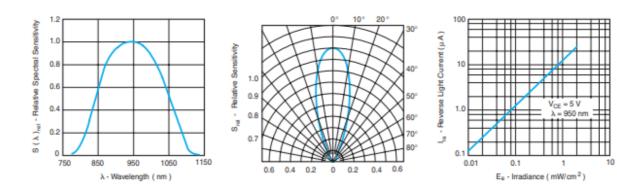
 $T_{amb} = 25^{\circ}C$, unless otherwise specified $T_{amb} = 25^{\circ}C$, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур	Max	Unit
Forward Voltage	IF = 20 mA	V _F		1.3	1.5	V
	$IF = 1 A, t_p = 100 \ \mu s$	VF		2.4		V
Temp. Coefficient of VF	IF = 1.0 mA	TK _{VF}		- 1.7		mV/K
Reverse Current	VR = 5 V	I _R			10	μΑ
Junction capacitance	VR = 0 V, f = 1 MHz, E = 0	Cj		160		pF
Radiant Intensity	IF = 20 mA	l _e	2.5	5	13	mW/sr
	IF = 100 mA, tp = 100 μs	l _e		25		mW/sr
Radiant Power	IF = 100 mA, tp = 20 ms	φ _e		35		mW
Temp. Coefficient of - de	IF = 20 mA	ТКф _е		- 0.6		%/K
Angle of Half Intensity		φ		± 17		deg
Peak Wavelength	IF = 20 mA	λp		870		nm
Spectral Bandwidth	IF = 20 mA	Δλ		40		nm
Temp. Coefficient of λp	IF = 20 mA	ТКЛр		0.2		nm/K
Rise Time	IF = 20 mA	t _r		30		ns
Fall Time	IF = 20 mA	t _f		30		ns
Virtual Source Diameter		Ø		1.2		mm

Appendix 4 – Photodiode Datasheet (TEMD1000)

Absolute Maximum Ratings

Tamb = 25°C, unless otherwise specified


Parameter	Test condition	Symbol	Value	Unit
Reverse Voltage		VR	60	v
Power Dissipation	$T_{amb} \le 25^{\circ}C$	Pv	75	mW
Junction Temperature		Тј	100	°C
Storage Temperature Range		T _{stg}	- 40 to + 100	°C
Operating Temperature Range		T _{stg}	- 40 to + 85	°C
Soldering Temperature	t ≤ 5 s	T _{sd}	< 260	°C

Basic Characteristics

 $T_{amb} = 25$ °C, unless otherwise specified $T_{amb} = 25$ °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward Voltage	I _F = 50 mA	VF		1.0	1.3	v
Breakdown Voltage	I _R = 100 μA, E = 0	V _(BR)	60			V
Reverse Dark Current	V _R = 10 V, E = 0	I _{ro}		1	10	nA
Diode capacitance	V _R = 5 V, f = 1 MHz, E = 0	CD		1.8		pF
Reverse Light Current	$\begin{array}{l} E_{e} = 1 \ mW/cm^2, \\ \lambda = 870 \ nm, \ V_{R} = 5 \ V \end{array}$	l _m		10		μА
	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_B = 5 \text{ V}$	l _m	5	12		μА

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Temp. Coefficient of Ira	V _R = 5 V, = 870 nm	TK _{ira}		0.2		%/K
Absolute Spectral Sensitivity	V _R = 5 V, = 870 nm	s(\lambda)		0.60		A/W
	V _R = 5 V, = 950 nm	s(\lambda)		0.55		A/W
Angle of Half Sensitivity		ф		±15		deg
Wavelength of Peak Sensitivity		λ _p		900		nm
Range of Spectral Bandwidth		λ _{0.5}		840 to 1050		nm
Rise Time	$V_{R} = 10 V, R_{L} = 50, \Omega$	t _r		4		ns
	λ = 820 nm					
Fall Time	$V_{R} = 10 V, R_{L} = 50, \Omega$	t _f		4		ns
	λ = 820 nm					

