
Week 5

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Pointers

2

NWEN 241: 3

Memory Location

• All information accessible to a running computer program are stored somewhere in

the computer's memory

1 memory location

...

Every memory
location is identified
by an address

1000

1001

1002

1003

1004

1005

NWEN 241: 4

Memory Location

• How big is 1 memory location?

– It depends on the computer memory architecture

Word-addressable architecture:
• Every memory location corresponds to one word

Byte-addressable architecture:
• Every memory location corresponds to one byte

Most computers today have byte-addressable memory

1 memory location1000

NWEN 241: 5

Memory Location

• How big is the address?

– It depends on the number of bits used by CPU for addressing

• Example:

– In a computer that uses 32 bits for addressing, an address has 32 bits

– If the computer has byte-addressable memory, then the memory space is 2
32

 bytes = 4
gigabytes

1 memory location1000

NWEN 241: 6

Memory Location and Variables

• A variable declaration allocates memory to store the value of the variable

'A'

...

...

1000

1001

1002

1003

1004

1005

1001
char c = 'A';

Memory location 1001
contains value of
variable c

A variable directly references
a value

NWEN 241: 7

Memory Location and Variables

• In a byte-addressable computer, how do we address a data that occupies more

than 1 byte, e.g., int, float or double?

...

The address of a multi-
byte data is the starting
address

1000

1001

1002

1003

1004

1005

1001

NWEN 241: 8

Memory Location and Variables

• In a byte-addressable computer, how do we address arrays?

...

The address of an array
is the starting address
of the first element

1000

1001

1002

1003

1004

1005

1001

NWEN 241: 9

Memory Location and C

• C provides the ability to access specific memory locations, using pointers

Pointers are variables that contain memory addresses as their
values

A variable directly references a value

A pointer indirectly references a value

Variable vs Pointer

NWEN 241: 10

'A'

...

...

1000

1001

1002

1003

2016

2017

1001

1001

2014

2015

2018

2019

A variable directly
references a value

A pointer indirectly
references a value

A pointer and a variable

NWEN 241: 11

Declaring a Pointer

• Pointers are typed based on the type of entity that they point to
– To declare a pointer, use * preceding the variable name as in:

– Examples:

data_type *name;

int *p; // p is a pointer to an int
float *q; // q is a float pointer
char *r; // r is a char pointer
int *s[5]; // s is an array of 5 int pointers

NWEN 241: 12

What Happens in a Pointer Declaration?

int *p;

2016

2017
????

2014

2015

2018

2019

• Memory is allocated that can store an
address

• The size of this space depends on the
number of bits used for addressing

• The initial contents may be some
‘rubbish’ number

– This means the pointer may point to
arbitrary memory locations

...

...

NWEN 241: 13

Address Operator (&)

• The address (&) operator can be used in front of any variable

– The operation will return the memory location of the variable

• Example:

&name
name can be any ordinary variable or
even a pointer variable

int a, *x;
x = &a;
/* x variable contains address of a, i.e.,
x points to variable a */

NWEN 241: 14

Indirection Operator (*)

• A pointer variable contains a memory address

• To refer to the contents of the variable that the pointer points to, we use indirection

operator

• Example:

*name name is a pointer variable

int a = 100, b, *x;
x = &a;
b = *x;
/* b will be assigned the content pointed
to by x, which is 100 */

NWEN 241: 15

Graphical Illustration

Declaration:

 int a = 1;

 int *x = NULL;

 NULL – pointer literal/constant to non-existent address

Assignment:

 x = &a;

1

a x NULL

1

a x

NWEN 241: 16

Pointer Basics

• Given:

int a = 1, b = 5; int *x;

x = &a; // What is the value of x ?

*x = *x + 1; // a = __ ; b = __ ;

b = *x;

• What is the value of b ?

NWEN 241: 19

Admin

• Assignment 2 has been released

• Due date is 22 October, 7 pm

NWEN 241: 20

Usage of Pointers

1) Provide an alternative means of accessing information stored in arrays

2) Provide an alternative (and more efficient) means of passing parameters to

functions

3) Enable dynamic data structures, that are built up from blocks of memory allocated

from the heap at run time

NWEN 241: 21

Pointers and Arrays (1)

• Arrays in C are pointed to, i.e. the variable that you declare for the array is

actually a fixed pointer to the first array element

• Example:

• z is a fixed pointer, it points to the address of the first element z[0]

• In other words, z == &z[0]

int z[10] = {1, 2, 3};

NWEN 241: 22

Pointers and Arrays (2)

• Array elements are usually accessed using [] (with the index)

• Pointers can also be used to access array elements

– z[0], ip[0], *z, or *ip can all be used to access the first element of the
array z

int z[10], *ip;
ip = &z[0];

NWEN 241: 23

Graphical Illustration

int z[10], *ip;
ip = &z[0];

ip

z

NWEN 241: 24

Graphical Illustration

int z[10], *ip;
ip = &z[0];

int z[10], *ip;
ip = &z[0];

ip

z

• z[0], ip[0] , *ip or *z can all be used
to access the first element of the array z

NWEN 241: 25

How To Access Next Element Using Pointer?

• What about accessing z[1] using pointers ?

Is it *(ip+1)?

• Hmmm…

• Since ip is an address, adding 1 will
just point to the next byte

• But since the array consists of ints
(which are more than 1 byte), ip+1 will
still point to a certain part of the first
element?

...

1000

1001

1002

1003

1004

1005

1001

NWEN 241: 26

Pointer Arithmetic

• Addition and subtraction can be performed on pointers

• Suppose :

data_type *name;

name + k

name - k

Evaluated as

name + k*sizeof(data_type)

Evaluated as

name - k*sizeof(data_type)

NWEN 241: 27

Pointers and Arrays (3)

• Arrays in C are pointed to, i.e. the variable that you declare for the array is

actually a fixed pointer to the first array element

• Example:

• z is a fixed pointer, it points to the address of the first element z[0]

• In other words, z == &z[0]

• In general, z+i == &z[i]

int z[10] = {1, 2, 3};

NWEN 241: 28

Pointers and Arrays (4)

• Array elements are usually accessed using [] (with the index)

• Pointers can also be used to access array elements

– z[i], ip[i], *(z+i), or *(ip+i) can all be used to access the ith
element of the array z

int z[10], *ip;
ip = &z[0];

NWEN 241: 29

Graphical Illustration

int z[10], *ip;
ip = &z[0];

int z[10], *ip;
ip = &z[0];
ip++; // ip = ip + 1

ip

z

NWEN 241: 30

Graphical Illustration

int z[10], *ip;
ip = &z[0];

int z[10], *ip;
ip = &z[0];
ip++; // ip = ip + 1

ip

z

	Introduction
	Slide 1: Week 5 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Pointers
	Slide 3: Memory Location
	Slide 4: Memory Location
	Slide 5: Memory Location
	Slide 6: Memory Location and Variables
	Slide 7: Memory Location and Variables
	Slide 8: Memory Location and Variables
	Slide 9: Memory Location and C
	Slide 10
	Slide 11: Declaring a Pointer
	Slide 12: What Happens in a Pointer Declaration?
	Slide 13: Address Operator (&)
	Slide 14: Indirection Operator (*)
	Slide 15: Graphical Illustration
	Slide 16: Pointer Basics
	Slide 19: Admin
	Slide 20: Usage of Pointers
	Slide 21: Pointers and Arrays (1)
	Slide 22: Pointers and Arrays (2)
	Slide 23: Graphical Illustration
	Slide 24: Graphical Illustration
	Slide 25: How To Access Next Element Using Pointer?
	Slide 26: Pointer Arithmetic
	Slide 27: Pointers and Arrays (3)
	Slide 28: Pointers and Arrays (4)
	Slide 29: Graphical Illustration
	Slide 30: Graphical Illustration

