
Week 7

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

• Structures

NWEN 241: 3

Structures

3

NWEN 241: 4

Background

• Basic data types

− int : integer ✓

− char : character ✓

− float : floating point number ✓

− double : double-precision floating point number ✓

• Derived data types

− Arrays ✓

− Strings ✓

− Structures

NWEN 241: 5

Structures

• A struct is a derived data type composed of members that are each basic or

derived data types

• A single struct would store the data for one object. An array of structs would

store the data for several objects

• A struct can be defined in several ways, as illustrated in the following examples

NWEN 241: 6

Declaring a Structure

• Syntax of the structure type declaration:

− structure_tag specifies the name of the structure

− structure_tag and variable_list are optional

− If structure_tag is not specified, variable_list should be specified; otherwise, there
is no way to declare variables using the unnamed structure type

struct structure_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

NWEN 241: 7

Declaring a Structure

• Syntax of the structure type declaration:

• Structure members can be

− Basic data types

− Derived and user-defined types

− Pointers to basic, derived and user-defined data types

− Function pointers

struct structure_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

NWEN 241: 8

Examples

• struct declaration that only defines a type:

• struct declaration that defines a type and reserves storage for variables:

struct student_info { // named struct
 char name [20];
 int student_id;
 int age;
}; // does not reserve any space

struct student_info { // named struct
 char name [20];
 int student_id;
 int age;
} s, t; // reserves space for s and t

NWEN 241: 9

Examples

• Declaring a variable struct current_student

• Above statement reserves space for:

− 20 character array,

− integer to store student ID, and

− integer to store age

struct student_info current_student;

NWEN 241: 10

Examples

• Declaring array of structures to store information of enrolled students in a class

• Reserves space for 99 element array of records (structs) for students enrolled in

NWEN241.

struct student_info nwen241class[99];

NWEN 241: 11

Creating New User Defined Types

• Instead of writing struct student_info every time we declare a

variable, we can define it as a new data type

• This makes StudentInfo a new user-defined type, and you can declare

a variable as follows:

typedef struct {
 char name [20];
 int student_id;
 int age;
} StudentInfo;

StudentInfo current_student;

NWEN 241: 12

New struct and Data Type

• If struct student_info has been previously defined, then we can create a new

data type using typedef :

typedef struct student_info StudentInfo;

NWEN 241: 13

Initializing at Declaration (1)

• It is possible to initialize a struct at declaration

• Order of initializer values should follow order of declaration

typedef struct {
 char name [20];
 int student_id;
 int age;
} StudentInfo;

StudentInfo current_student = { "John Doe", 12345, 18 };

NWEN 241: 14

Initializing at Declaration (1)

• Partial initialization is also possible

• Remaining fields will be set to 0

typedef struct {
 char name [20];
 int student_id;
 int age;
} StudentInfo;

StudentInfo current_student = { "John Doe", 12345};

NWEN 241: 15

Initializing at Declaration (2)

• It is possible to initialize certain fields of struct using designated

initialization

• Initialization can be in any order

typedef struct {
 char name [20];
 int student_id;
 int age;
} StudentInfo;

StudentInfo s1 = { .age = 18, .name = "John Doe" };
// or StudentInfo s1 = { age: 18, name: "John Doe" };

NWEN 241: 16

Accessing and Manipulating structs

• We can reference a component of a structure by the direct component

selection operator, which is a period, e.g.

• The direct component selection operator has level 1 priority in the

operator precedence

• Copying of an entire structure can be easily done by the assignment

operator

strcpy(student1.name, "John Smith");
student1.age = 18;
printf("%s is in age %d\n", student1.name, student1.age);

student2 = student1;

NWEN 241: 17

Example – struct and typedef (1)
#include <stdio.h>

#include <string.h>

int main() {

 typedef struct student_info {

 char name[20];

 int student_id;

 int age;

 } StudentInfo;

 StudentInfo current_student; // declare new variable using

 // new type StudentInfo

 struct student_info new_student; // declare using struct format

 // do stuff – see next slide

NWEN 241: 18

Example – struct and typedef (2)

 // declarations in previous slide

 // initialize new student record

 strcpy(new_student.name , "John Smith");

 new_student.student_id = 300300300;

 new_student.age = 22;

 // copy new_student to current_student

 current_student = new_student;

 printf("Student name : %s\n", current_student.name);

 printf("Student ID : %.9d\n", current_student.student_id);

 printf("Student Age : %d\n", current_student.age);

}

NWEN 241: 19

Passing struct to Functions (1)

• Suppose there is a structure defined as follows

typedef struct student_info {

 char name[20];

 int student_id;

 int age;

 } StudentInfo;

NWEN 241: 20

Passing struct to Functions (2)

• When a structure variable is passed as an input argument to a function, all its

component values are copied into the local structure variable

/*

 * Display all components of StudentInfo structure

 */

 void print_student(StudentInfo s)

 {

 printf("Student name: %s\n", s.name);

 printf("Student ID: %d\n", s.student_id);

 printf("%s is in age %d\n\n", s.name , s.age);

 }

NWEN 241: 21

Passing struct to Functions (3)

• Passing entire copy of a structure can be inefficient, especially for large structs

• There is a better way to pass structs to functions using pointers

NWEN 241: 22

Structures and Pointers

• A struct pointer can be used to point to a struct

• Example:

typedef struct {
 char name [20];
 int student_id;
 int age;
} StudentInfo;

StudentInfo s = { "John Doe", 12345, 20};
StudentInfo *sp = &s;

NWEN 241: 23

Accessing and Manipulating struct Pointers

• We use direct component selection operator: period, e.g.,

• We can reference a component of a structure pointer by the indirect

component selection operator, which is a ->, e.g.

• The indirect component selection operator has level 1 priority in the

operator precedence

strcpy(sp->name, "John Smith");
sp->age = 18;
printf("%s is in age %d\n", sp->name, sp->age);

strcpy((*sp).name, "John Smith");
(*sp).age = 18;
printf("%s is in age %d\n", (*sp).name, (*sp).age);

NWEN 241: 24

Call by Reference for Efficiency

• Recall: When a structure variable is

passed as an input argument to a

function, all its component values are

copied into the local structure variable

• Passing entire copy of a structure can

be inefficient, especially for large

structs

• For efficiency, pass a copy of the

address of structure to function

• This can be done using pointer to

struct as function parameter

typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

void print_student(StudentInfo s)
{
 printf("Name: %s\n", s.name);
 printf("Student ID: %d\n", s.id);
 printf("Age: %d\n", s.age);
}

…

StudentInfo s1 = {"John", 12345, 20};
print_student(s1);

NWEN 241: 25

Call by Reference for Efficiency

typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

void print_student(StudentInfo *s)
{
 printf("Name: %s\n", s->name);
 printf("Student ID: %d\n", s->id);
 printf("Age: %d\n", s->age);
}

…

StudentInfo s1 = {"John", 12345, 20};
print_student(&s1);

Copy of address of s1 is

passed instead of a

copy of the entire

structure s1

NWEN 241: 26

Call by Reference

• print_student() can actually

modify the value of s

…

void print_student(StudentInfo *s)
{
 printf("Name: %s\n", s->name);
 printf("Student ID: %d\n", s->id);
 printf("Age: %d\n", s->age);

 s->age = 1000;
}

…

NWEN 241: 27

Call by Reference: Placing Restrictions

• How to restrict function from

modifying parameters passed by

reference?

• Add const modifier to

parameter

…

void print_student(const StudentInfo *s)
{
 printf("Name: %s\n", s->name);
 printf("Student ID: %d\n", s->id);
 printf("Age: %d\n", s->age);

 s->age = 1000; // compiler will not
 // allow this
}

…

NWEN 241: 28

Call by Reference for Efficiency

typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

void enter_student(StudentInfo *s)
{
 scanf("%[^\n]s", s->name);
 scanf("%d", &s->student_id);
 scanf("%d", &s->age);
}

…

StudentInfo s1;
enter_student(&s1);

Copy of address of s1 is

passed instead of a copy of
the entire structure s1

• If we define a variable as follows to

store data to be read in:

• StudentInfo s1;

• For the following function, we call it by

passing the parameter by reference:

• enter_student(&s1);

Why not &?

name is a string, so it is a pointer

value and & is not needed.

NWEN 241: 29

Array of Structures

typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

StudentInfo nwen241[80];

strcpy(nwen241[3].name, “John”);
nwen241[3].student_id = 300922023;
nwen241[3].age = 21;

.name .student_id .age

nwen241[0] “Mo” 300981683 21

nwen241[1] “Saskia” 300961592 18

nwen241[2] “Pondy” 300182652 25

nwen241[3] “Kerese” 300922023 24

… … …

nwen241[79] “Peter” 300139414 22

nwen241[0].age

nwen241[3].student_id

NWEN 241: 31

Array of structure to function
typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

void enter_all_student(StudentInfo *s)
{
 for(int i = 0; i < 80; i++){
 scanf("%[^\n]s%*c", s[i].name);
 scanf("%d%*c", &s[i].student_id);
 scanf("%d%*c", &s[i].age);

 }
}
…
StudentInfo nwen241[80];
enter_all_student(nwen241);

typedef struct student_info {
 char name[40];
 int student_id;
 int age;
} StudentInfo;

void enter_all_student(StudentInfo *s)
{
 for(int i = 0; i < 80; i++){
 scanf("%[^\n]s%*c ", s->name);
 scanf("%d%*c", &s->student_id);
 scanf("%d%*c", &s->age);
 s++;
 }
}
…
StudentInfo nwen241[80];
enter_all_student(nwen241);

read and ignore ‘\n’

	Introduction
	Slide 1: Week 7 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Content
	Slide 3: Structures
	Slide 4: Background
	Slide 5: Structures
	Slide 6: Declaring a Structure
	Slide 7: Declaring a Structure
	Slide 8: Examples
	Slide 9: Examples
	Slide 10: Examples
	Slide 11: Creating New User Defined Types
	Slide 12: New struct and Data Type
	Slide 13: Initializing at Declaration (1)
	Slide 14: Initializing at Declaration (1)
	Slide 15: Initializing at Declaration (2)
	Slide 16: Accessing and Manipulating structs
	Slide 17: Example – struct and typedef (1)
	Slide 18: Example – struct and typedef (2)
	Slide 19: Passing struct to Functions (1)
	Slide 20: Passing struct to Functions (2)
	Slide 21: Passing struct to Functions (3)
	Slide 22: Structures and Pointers
	Slide 23: Accessing and Manipulating struct Pointers
	Slide 24: Call by Reference for Efficiency
	Slide 25: Call by Reference for Efficiency
	Slide 26: Call by Reference
	Slide 27: Call by Reference: Placing Restrictions
	Slide 28: Call by Reference for Efficiency
	Slide 29: Array of Structures
	Slide 31: Array of structure to function

