
Week 8

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

• User-Defined Types

• Enumeration

• Derived data types

• Union

NWEN 241: 3

Enumeration types

3

NWEN 241: 4

Background

• Basic data types

− int : integer ✓

− char : character ✓

− float : floating point number ✓

− double : double-precision floating point number ✓

• Derived data types

− Arrays ✓

− Strings ✓

− Structures ✓

− Unions

• User defined data types

− Enumeration types

4

NWEN 241: 5

Motivation for Enumeration Type

• Oftentimes, a variable can only take

a few possible discrete values

• Macro is often used to define

symbolic constants that will

represent possible values of the

variable

• Enumeration is a better

alternative

#define COLOR_RED 0
#define COLOR_YELLOW 1
#define COLOR_GREEN 2

int main(void)
{
 int color;
 // can either be 0, 1 or 2
 …
 color = COLOR_GREEN;
}

NWEN 241: 6

Enumeration

• Enumeration is a user-defined data type that is used to assign identifiers to
integral constants

• Declaration syntax:

• Defines a new enumerated type

• Defines symbolic constants that take on integer values from 0 through n

➔ name_0 has value 0, name_1 has value 1, and so on

enum enum_tag {name_0, name_1, ..., name_n} variable_list;

NWEN 241: 7

Enumeration

• Enumeration is a user-defined data type that is used to assign identifiers to
integral constants

• Declaration syntax:

• enum_tag and variable_list are optional

enum enum_tag {name_0, name_1, ..., name_n} variable_list;

NWEN 241: 8

Enumeration

As an example, the statement:

• Defines a new enumerated type enum colors

• Defines three integer constants: red is assigned the value 0, yellow is

assigned 1 and green is assigned 2

• Any variable of enum colors type or basic data type can be assigned

either red, yellow or green

enum colors { red, yellow, green };

NWEN 241: 9

Enumeration

Unnamed enumeration example:

• Defines three integer constants: red is assigned the value 0, yellow is

assigned 1 and green is assigned 2

• Any variable of basic data type can be assigned either red, yellow or

green

enum { red, yellow, green };

NWEN 241: 10

Enumeration

• It is possible to override the integer assignment, e.g.

• typedef can be used to create an alias for the new type, e.g.

• color_t is a new type which can be used for declaring variables

typedef enum colors {red = 3, yellow = 2, green = 1} color_t;

enum colors {red = 3, yellow = 2, green = 1};

NWEN 241: 11

Enumeration

• If an identifier is assigned a value and subsequent identifiers are not assigned, the

subsequent identifiers continue the progression from the assigned value

red is assigned the value 0, yellow is assigned 3, green is assigned 4, and blue is assigned 5.

enum colors { red, yellow = 3, green, blue };

NWEN 241: 12

enum Example (1)

#include <stdio.h>

/* Declaration defines new enumerated type and integer constants */

enum colors { red, yellow = 3, green, blue };

int main(void)
{
 /* Declaration defines variables of type enum colors */
 /* Can take values of red, yellow, green or blue */
 enum colors fgcolor = blue, bgcolor = yellow;

 printf ("%d %d\n", fgcolor, bgcolor);
 /* Will print 5 3 */

 return 0;
}

NWEN 241: 13

enum Example (2)

#include <stdio.h>

/* Declaration defines integer constants */

enum { red, yellow = 3, green, blue };

int main(void)
{
 /* Declaration defines variables of type int */
 /* Can be assigned red, yellow, green or blue */
 int fgcolor = blue, bgcolor = yellow;

 printf ("%d %d\n", fgcolor, bgcolor);
 /* Will print 5 3 */

 return 0;
}

NWEN 241: 14

Repeated Identifiers

• An identifier in an enumerated type cannot be re-used to declare a new variable or

enumeration in the same scope

void func(void)
{
 enum colors { red, yellow, black };

 enum rgb { red, green, blue };
 …

}

void func(void)
{
 enum colors { red, yellow, black };

 int red;
 …

}

Will not compile due to re-use of identifier red in the same scope

NWEN 241: 15

Unions

15

NWEN 241: 16

Unions

• A union is like a struct, but the different fields take up the same space within

memory

• Declaration syntax:

union union_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

− union_tag specifies the name of the union

− union_tag and variable_list are optional

− If union_tag is not specified, variable_list
should be specified; otherwise, there is no way to
declare variables using the unnamed union type

NWEN 241: 17

Unions

• A union is like a struct, but the different fields take up the same space within

memory

• Declaration syntax:

union union_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

• Union members can be
− Basic data types
− Derived and user-defined types
− Pointers to basic, derived and user-defined

data types
− Function pointers

NWEN 241: 18

Union vs Structure

Structure Union

Declaration syntax Same

Storage allocation Allocates storage for all

members separately

• Allocates common storage

for all its members

• Space is allocated to hold

the biggest member

Access All members can be

accessed at the same

time

Only one member can be

“active” at any given time

NWEN 241: 19

Union vs Structure: Storage Allocation

sizeof(struct space) = sizeof(i) + sizeof(f) + sizeof(c)

sizeof(union space) = max(sizeof(i), sizeof(f), sizeof(c))

union space {
 int i;
 float f;
 char c[4];
};

struct space {
 int i;
 float f;
 char c[4];
};

NWEN 241: 20

union Example

union elt {

 int i;

 char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

elt1.i

elt1.c

NWEN 241: 21

union Example

union elt {

 int i;

 char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

'A'

elt1.i

elt1.c

NWEN 241: 22

union Example

union elt {

 int i;

 char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

'A'

elt1.i

elt1.c'A'

300elt1.i

elt1.c

NWEN 241: 23

NWEN 241: 24

Review: Strings

• long int strlen(const char* source);

• Calculates the length of a given string, up to the first null character.

• char* strcpy(char* destination, const char* source);

• Copies the source string to the destination character array.

• int strcmp (const char* str1, const char* str2);
• Compares two strings and returns 0 if both strings are identical.

• char *strcat(char *dest, const char *src);
• Concatenates two strings and stores the result in the first argument.

NWEN 241: 25

Review: Structures

• Struct is just a collection of variables (which

can have different types) under a single name

• You can access members with the ‘.’ operator

or through a pointer with the ‘->’ operator

• A struct can be referenced, copied, and

assigned to

• The size of a struct is guaranteed to be as

large as the sum as the size of its members

//declare "struct person" type
struct person
{
 char name[100];
 int age
};

// give it an alias person_t
typedef struct person person_t;

NWEN 241: 26

Review: * And &

In Declaration In Expression

* int *i;
Declare i as a pointer to int

*i
Dereference i or obtain the value that i points to

& N/A &i
Get the address of i (a pointer to i)

NWEN 241: 27

Review: Pointers and Arrays

• Array decays into a pointer: an array is just a fixed pointer

• You cannot re-assign an array to point to another location

• You can let another pointer point to the array

• p can point to an int

• p can point to an array of int
int *p;

NWEN 241: 28

Introducing GDB

• GDB: GNU Debugger

• A much better way to debug your programs

• No need to rely on printf() to see the values of the variables

• You can step through your code

• You can even change variable values!!!

• You learn more about GDB in Exercise 2 (out on Monday, 21 October)

	Introduction
	Slide 1: Week 8 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Content
	Slide 3: Enumeration types
	Slide 4: Background
	Slide 5: Motivation for Enumeration Type
	Slide 6: Enumeration
	Slide 7: Enumeration
	Slide 8: Enumeration
	Slide 9: Enumeration
	Slide 10: Enumeration
	Slide 11: Enumeration
	Slide 12: enum Example (1)
	Slide 13: enum Example (2)
	Slide 14: Repeated Identifiers
	Slide 15: Unions
	Slide 16: Unions
	Slide 17: Unions
	Slide 18: Union vs Structure
	Slide 19: Union vs Structure: Storage Allocation
	Slide 20: union Example
	Slide 21: union Example
	Slide 22: union Example
	Slide 23
	Slide 24: Review: Strings
	Slide 25: Review: Structures
	Slide 26: Review: * And &
	Slide 27: Review: Pointers and Arrays
	Slide 28: Introducing GDB

