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Content

• User-Defined Types

• Enumeration

• Derived data types

• Union
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Enumeration types
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Background

• Basic data types

− int : integer ✓

− char : character ✓

− float : floating point number ✓

− double : double-precision floating point number ✓

• Derived data types

− Arrays ✓

− Strings ✓

− Structures ✓

− Unions

• User defined data types

− Enumeration types
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Motivation for Enumeration Type

• Oftentimes, a variable can only take 

a few possible discrete values

• Macro is often used to define 

symbolic constants that will 

represent possible values of the 

variable

• Enumeration is a better 

alternative

#define COLOR_RED 0
#define COLOR_YELLOW 1
#define COLOR_GREEN 2

int main(void)
{
    int color; 
    // can either be 0, 1 or 2
    …
    color = COLOR_GREEN;
}
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Enumeration

• Enumeration is a user-defined data type that is used to assign identifiers to 
integral constants

• Declaration syntax:

• Defines a new enumerated type 

• Defines symbolic constants that take on integer values from 0 through n  

➔ name_0 has value 0, name_1 has value 1, and so on

enum enum_tag {name_0, name_1, ..., name_n} variable_list;
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Enumeration

• Enumeration is a user-defined data type that is used to assign identifiers to 
integral constants

• Declaration syntax:

• enum_tag and variable_list are optional

enum enum_tag {name_0, name_1, ..., name_n} variable_list;
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Enumeration 

As an example, the statement:

• Defines a new enumerated type enum colors

• Defines three integer constants: red is assigned the value 0, yellow is 

assigned 1 and green is assigned 2

• Any variable of enum colors type or basic data type can be assigned 

either red, yellow or green

enum colors { red, yellow, green }; 
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Enumeration

Unnamed enumeration example:

• Defines three integer constants: red is assigned the value 0, yellow is 

assigned 1 and green is assigned 2

• Any variable of basic data type can be assigned either red, yellow or 

green

enum { red, yellow, green }; 
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Enumeration

• It is possible to override the integer assignment, e.g.

• typedef can be used to create an alias for the new type, e.g.

• color_t is a new type which can be used for declaring variables

typedef enum colors {red = 3, yellow = 2, green = 1} color_t; 

enum colors {red = 3, yellow = 2, green = 1}; 
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Enumeration

• If an identifier is assigned a value and subsequent identifiers are not assigned, the 

subsequent identifiers continue the progression from the assigned value

red is assigned the value 0, yellow is assigned 3, green is assigned 4, and blue is assigned 5.

enum colors { red, yellow = 3, green, blue }; 



NWEN 241: 12

enum Example (1)

#include <stdio.h>

/* Declaration defines new enumerated type and integer constants */

enum colors { red, yellow = 3, green, blue }; 

int main(void) 
{
   /* Declaration defines variables of type enum colors */
   /* Can take values of red, yellow, green or blue */
   enum colors fgcolor = blue, bgcolor = yellow;

   printf ("%d %d\n", fgcolor, bgcolor);
   /* Will print 5 3 */
 
   return 0;
}
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enum Example (2)

#include <stdio.h>

/* Declaration defines integer constants */

enum { red, yellow = 3, green, blue }; 

int main(void) 
{
   /* Declaration defines variables of type int */
   /* Can be assigned red, yellow, green or blue */
   int fgcolor = blue, bgcolor = yellow;

   printf ("%d %d\n", fgcolor, bgcolor);
   /* Will print 5 3 */
 
   return 0;
}
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Repeated Identifiers

• An identifier in an enumerated type cannot be re-used to declare a new variable or 

enumeration in the same scope

void func(void) 
{
   enum colors { red, yellow, black };

   enum rgb { red, green, blue }; 
       …

}

void func(void) 
{
   enum colors { red, yellow, black };

   int red; 
       …

}

Will not compile due to re-use of identifier red in the same scope
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Unions
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Unions

• A union is like a struct, but the different fields take up the same space within 

memory

• Declaration syntax:

union union_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

− union_tag specifies the name of the union

− union_tag and variable_list are optional

− If union_tag is not specified, variable_list 
should be specified; otherwise, there is no way to 
declare variables using the unnamed union type
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Unions

• A union is like a struct, but the different fields take up the same space within 

memory

• Declaration syntax:

union union_tag {
 type1 member1;
 type2 member2;
 ...
} variable_list;

• Union members can be
− Basic data types
− Derived and user-defined types
− Pointers to basic, derived and user-defined 

data types
− Function pointers
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Union vs Structure

Structure Union

Declaration syntax Same

Storage allocation Allocates storage for all 

members separately

• Allocates common storage 

for all its members

• Space is allocated to hold 

the biggest member

Access All members can be 

accessed at the same 

time

Only one member can be 

“active” at any given time
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Union vs Structure: Storage Allocation

sizeof(struct space) = sizeof(i) + sizeof(f) + sizeof(c)

sizeof(union space) = max(sizeof(i), sizeof(f), sizeof(c))

union space {
    int i;
    float f;
    char c[4];
};

struct space {
    int i;
    float f;
    char c[4];
};
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union Example

union elt {

   int   i;

   char  c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up 
32 bits (4 bytes):

elt1.i

elt1.c
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union Example

union elt {

   int   i;

   char  c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up 
32 bits (4 bytes):

'A'

elt1.i

elt1.c
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union Example

union elt {

   int   i;

   char  c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up 
32 bits (4 bytes):

'A'

elt1.i

elt1.c'A'

300elt1.i

elt1.c
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Review: Strings

• long int strlen(const char* source);

• Calculates the length of a given string, up to the first null character.

• char* strcpy(char* destination, const char* source);

• Copies the source string to the destination character array.

• int strcmp (const char* str1, const char* str2);
• Compares two strings and returns 0 if both strings are identical.

• char *strcat(char *dest, const char *src);
• Concatenates two strings and stores the result in the first argument.
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Review: Structures

• Struct is just a collection of variables (which 

can have different types) under a single name

• You can access members with the ‘.’ operator 

or through a pointer with the ‘->’ operator

• A struct can be referenced, copied, and 

assigned to

• The size of a struct is guaranteed to be as 

large as the sum as the size of its members

//declare "struct person" type 
struct person 
{
  char name[100];
  int age
};

// give it an alias person_t
typedef struct person person_t;
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Review: * And &

In Declaration In Expression

* int *i;
Declare i as a pointer to int

*i
Dereference i or obtain the value that i points to

& N/A &i
Get the address of i (a pointer to i)
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Review: Pointers and Arrays

• Array decays into a pointer: an array is just a fixed pointer

• You cannot re-assign an array to point to another location

• You can let another pointer point to the array

• p can point to an int

• p can point to an array of int
int *p;
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Introducing GDB

• GDB: GNU Debugger

• A much better way to debug your programs

• No need to rely on printf() to see the values of the variables

• You can step through your code

• You can even change variable values!!!

• You learn more about GDB in Exercise 2 (out on Monday, 21 October)
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